	Reg. No.										
ANIPAL INSTITUTE OF TECHNOLOGY											
MANIPAL (A constituent unit of MAI	HE, Manipal)										

DEPARTMENT OF MECHATRONICS I SEMESTER M.TECH. (INDUSTRIAL AUTOMATION AND ROBOTICS) END SEMESTER EXAMINATIONS (PART-A), February 2022 SUBJECT: ANALOG AND DIGITAL ELECTRONICS (Elective-1) [MTE 5001]

(Date: February 11, 2022)

Time: 45 + 3 Minutes

MAX. MARKS: 30

Instructions to Candidates:

✤ Answer ALL the questions.

Q. No		Μ	CO	РО	LO	BL
110	MCQ Type Questions $(1 \times 30 = 30)$					
1.	(10011001010) Excess 3 = (?) BCD a) (110110010001) BCD b) (011110010100) BCD c) (000110010111) BCD d) (010001110111) BCD	1	1	1	1	1
2.	Analyse the below circuit and choose the correct expression of sum (S) and carry (C). $ \begin{array}{c} x \\ y \\ x \\ z^{2} \\ y^{2} \\ z^{2} \\ x^{2} \\ x^{2} \\ z^{2} \\ z^{2} \\ x^{2} \\ z^{2} \\ z^{$	1	1	1, 2, 4	1,2	4
3.	Consider the following functions- 1) F (A, B, C) = $\sum (0, 2, 3)$ 2) F (A, B, C) = $\sum (0, 1, 6, 7)$ 3) F (A, B, C) = $\sum (0, 1, 2, 4)$ 4) F (A, B, C) = $\sum (3, 5, 6, 7)$	1	1	1	1	3,4

	Which of the above functions are self-dual functions ?					
	a) Only (5)b) Only (2)					
	c) Only (3) and (4)					
	d) All are self-dual functions					
4.	 Binary and hexadecimal representation of (170.7)₈ is. (Use as many bits as needed, and approximate the fraction to 4 binary digits) a) Binary: 100110110.000 ; Hexadecimal: 87.E b) Binary: 001111000.111 ; Hexadecimal: 78.E c) Binary: 000111000.011 ; Hexadecimal: 87.F d) Binary: 100110000.010 ; Hexadecimal: 78.F 	1	1	1	1	1
5.	Determine the radix R that satisfies the following: $(365)_R = (194)_{10}$. a) 5 b) 6 c) 7 d) 8	1	1	1	1	1
6.	 Which gates in Digital Circuits are required to convert a NOR-based SR latch to an SR flip-flop? a) Two 2 input OR gates b) Two 3 input AND gates c) Two 2 input AND gates d) Two 3 input OR gates 	1	2	1	1	1
7.	Consider the following statements for the Mealy model of Finite State Machine- 1) Outputs are a function of states only 2) Outputs are a function of external inputs and states 3) Outputs are usually specified on the states (in the circles) 4) Outputs are usually specified on the state transition arcs Which of the above statement(s) is/are correct for the Mealy model of FSM? a) Only (2) and (4) b) Only (3) c) Only (1) and (2) d) All statements are correct	1	2	1, 2	1, 2	1
8.	What will be the number of outputs produced by the combinational circuit that are designed to perform addition and subtraction? If the combinational circuit accepts two 2-bit unsigned numbers $C = C_1C_0$ and $D = D_1D_0$. The circuit produces $C - D$ when $C > D$, and produces $C + D$ otherwise. a) 2 b) 3 c) 4 d) 5	1	2	1, 2	1, 2	3, 4
9.	Analyse the below circuit and choose the correct answer from the following	1	2	1, 2	1, 2	3, 4

	 a) The circuit is Mealy b) The circuit is Mixed of Moore and Mealy d) The circuit is meither Moore nor Mealy 					
10.	Analyze the sequential circuit shown in the below figure, and determine the way it works.	1	2	1, 2, 3	1, 2	3, 4
11.	A sequential circuit is designed using JK flip-flops that will work as 4-bit modulo-16 ripple counter. If the propagation delay of each flip-flop is 60 nanoseconds, the maximum clock frequency that can be used is equal to a) 20 MHz b) 10 MHz c) 5.17 MHz d) 4.17 MHz	1	2	1, 2	1, 2	1, 3
12.	The nibble 1101 is storing in a bidirectional four-bit shift register. Its input is HIGH. The nibble 1011 is waiting to be entered on the serial data- input line. After three clock pulses , the shift register is storing a) 1011 b) 1101 c) 0111 d) 1110	1	2	1, 2	1, 2	2, 3

14.	 A sequence of equally spaced timing pulses may be easily generated Clearing one flip-flop and presetting all others Presetting one flip-flop and clearing all others Presetting all the flip-flops Which of the above statement(s) is/are correct for the Ring shift counter? a) Only (2) and (4) b) Only (3) c) Only (1) and (3) d) All statements are correct 	1	2	1, 2	1	1, 3
	a) 2 b) 3 c) 4 d) 5					
15.	An 8-bit binary ripple UP counter with a modulus of 256 is holding the count 01111111. What will be the count after 135 clock pulses ? a) 0000 0101 b) 1111 1001 c) 0000 0110 d) 0000 0111	1	2	1, 2	1, 2	1, 3
16.	 What is main requirement for n-channel to form in n-channel MOSFET? a) The voltage across the "oxide" layer must be less then threshold voltage (V_t). b) The voltage across the "oxide" layer must exceed threshold voltage (V_t). c) The voltage across the "oxide" layer must be equal to threshold voltage (V_t). d) The voltage across the "oxide" layer must exceed overdrive voltage (V_{ov}). 	1	3	1	1	1
17.	In the circuit below, R_I and R_2 are 4.4 and 1.1 kilo-ohms respectively. The voltage V_{CC} is 4.9 volts. The diode follows the standard diode equation, with <i>Is</i> of 16x10 ⁻¹² milli-amperes, and the thermal voltage v_T of 25 millivolts. (Assume, if both diodes are ON, the drops across them would be 0.65 volts each). V_{CC} $i_1 + V_{CC}$ R_1 What is the current i_I (in milli-amperes)?	1	3	1, 2	1, 2	2, 3

	a) 3.42 b) 2.97 c) 3.27 d) 3.125					
18.	For the circuit shown on below figure with $V_{DD} = 6$ Volt and $R = 2$ kilo- ohms. Assume that the diode has a current of 1 mA at a voltage of 0.7 V. $R \xrightarrow{I_D} + V_D \xrightarrow{V_D} -$ The current I_D (in milli-amperes) is: a) 4.3 b) 2.65 c) 4.65 d) 2.3	1	3	1, 2	1, 2	2, 3
19.	For the circuit shown on below figure with $V_{DD} = 6$ Volt and $R = 2$ kilo- ohms. Assume that the diode has a current of 1 mA at a voltage of 0.7 V. $R \xrightarrow{I_D} + V_{DD} \xrightarrow{+} V_D \xrightarrow{-}$ The diode voltage V_D (in Volt)is: a) 0.725 V b) 0.5 V c) 0.6 V d) 0.625 V	1	3	1, 2	1, 2	2, 3
20.	In the circuit given below, 20 Volt peak sinusoidal input is applied. What will be the peak value of the output waveform? V=5V v=5V v_i R v_o r_o	1	3	1, 2	1, 2	3, 4
21.	For an n-channel FET, what is the direction of current flow ? a) Source to drain	1	3	1	1	1
L					i	

	b) Drain to source					
	c) Gate to source					
	d) Gate to drain					
22.	 How can inverting op amp be adapted to perform integration? a) Utilization of only resistor as feedback impedance. b) Utilization of only capacitor as feedback impedance. c) Utilization of very large resistor in parallel with the Capacitor as feedback impedance. d) Utilization of only inductor as feedback impedance. 	1	4	1, 2	1, 2	2, 3
23.	Analyze the output voltage of an op-amp summing amplifier for the following voltages and resistors $V_1 = -2$ V, $V_2 = +2$ V, $V_3 = +3$ V, $R_1 = 500$ k ohms, $R_2 = 500$ k ohms, $R_3 = 2$ M ohms. Use $R_f = 1.5$ M-ohms in all cases. a) -7.15 V b) +3.65 V c) -2.25 V d) +2.25 V	1	4	1, 2, 3	1, 2	3, 4
24.	Analyze the circuit shown below and determine the output voltage for resistor components of value $R_f = 450$ k ohms, $R_1 = 2.3$ k ohms, $R_2 = 22$ k ohms, and $R_3 = 15$ k ohms for an input of 80 microvolt. $ \begin{array}{c} $	1	4	1, 2, 3	1, 2, 3	4, 5
25.	Analyze the circuit shown below and discover the output voltage expression V_2 + + 10 V V_2 + + 10 V V_1 + 10 V V_2 + + 10 V V_3 + + 10 V V_2 + + 10 V V_2 + + + 10 V V_3 + + 10 V V_4 + + 10 V V_5 + + 10 V V_6 + + 10 V V_7 + + + 10 V V_7 + + + + + + + + + + + + + + + + + + +	1	4	1, 2, 3	1, 2, 3	4, 5

	a) $Vo = 21(V_1 - V_2)$ b) $Vo = 201(V_1 - V_2)$ c) $Vo = 21(V_2 - V_1)$ d) None of the above					
26.	Determine the output Vo from the following circuit V2 = input signal V0 = ? V1 + V0 = ? a) 180° in phase with input signal b) 180° out of phase with input signal c) Same as that of input signal d) Output signal cannot be determined	1	4	1, 2, 3	1, 2, 3	4, 5
27.	 Which among the following can be used to detect the missing heart beat? a) Monostable multivibrator b) Astable multivibrator c) Schmitt trigger d) None of the mentioned 	1	5	1	1	1
28.	 Among which of the following factors do/does the operation of sample and hold mode depend/s? a) Input b) Output c) Position of switch d) All of the above 	1	5	1	1	1
29.	 How to obtain symmetrical waveform in Astable multivibrator? a) Use clocked RS flip-flop b) Use clocked JK flip-flop c) Use clocked D-flip-flop d) Use clocked T-flip-flop 	1	5	1	1	1
30.	 Which is not considered as a linear voltage regulator? a) Fixed output voltage regulator b) Adjustable output voltage regulator c) Switching regulator d) Special regulator 	1	5	1	1	1

|--|

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

DEPARTMENT OF MECHATRONICS

I SEMESTER M.TECH. (INDUSTRIAL AUTOMATION AND ROBOTICS)

END SEMESTER EXAMINATIONS (PART-B), February 2022

SUBJECT: ANALOG AND DIGITAL ELECTRONICS (Elective-1) [MTE 5001]

(Date: February 11, 2022)

Time: 75 + 10 Minutes

MAX. MARKS: 20

	Instructions to Candidates:								
	✤ Answer ALL the questions.								
	 Missing data if any can be suitably assumed. 								
Q. No		Μ	CO	РО	LO	BL			
	Descriptive Type Questions $(10 \times 2 = 20)$	1							
1A.	Design a Finite State Machines (FSM) that receives BCD digits serially	4	3	1, 3,	1, 3	3			
	through input A _{in} and converts them to excess-3 digits and produces the			12					
	result serially through output A _{out} . Assume an asynchronous reset input								
	to reset the machine. The following is an example of some input and								
	output streams:								
	Input A _{in} 000010101011110								
	Output A _{out} 1 1 0 0 0 0 0 1 0 0 1 1 0 1 0 1								
	(i) Formulate the state diagram of the machine assuming a Mealy								
	model.								
	(ii) Construct the state table and state transition table of the FSM.								
	(11) Model the FSM using D flip flops and combinational logic.								
1B.	Analyze the sequential circuit given in Figure 1B and determine the way	3	2	1, 3,	1, 2,	4, 5			
	it behaves.			5	3	,			
				5	5				
	<mark>↓↓↓ └</mark> ──┼╔╴╗ <mark>╴</mark> ✦-₿								
	Figure 1B								

1C.	(i) Determir	ne the decimal valu	ue (+55 and - 55) in bin	nary using a total of	3	1	1,	1	3
	8 bits in the following notations:						12		
		Bin	ary representation in 8	bits:			12		
	Decimal	Signed-	Signed-1's	Signed-2's					
	Deennar	magnitude	complement	complement					
		representation	representation	representation					
	+ 55								
	- 55								
	(ii) Assume	e the signed 2's co	mplement arithmetic c	peration A - B in 6					
	bits. W	ith $B = 101101$, the second	ne largest value allowe	ed for A in order to					
	avoid tl	ne occurrence of ov	verflow is ()2.					
2A.	Analyze th	e circuit shown in	Figure 2A, and determ	ine	4	3	1,	1, 2,	4, 5
	(i) The mo	de of operation by	considering +4 V and	+6 V base voltages.			12	2	
	(ii) All node voltage and branch current for base voltage of +4 V.						14	3	
	Assume th	at β is specified to	be 100.						
	+10 V								
		L							
	Figure 2A								
2B.	Analyze th	e circuit shown in	Figure 2B. By assumin	g the op-amp to be	3	4	1, 2,	1, 2,	4, 5
	ideal perfo	rm the following.		,			4	3	
	(i) Deriv	e an expression for	the closed-loop gain v	VO/VI.					
	(11) Desig	n an inverting an	iplifier with a gain of	100 and an input					
	resista not to	ince of 1 MQ2. Assi	ame that for practical r	easons it is required					
		use resistors great							
			v_x						
		-	$i_2 \rightarrow R_2 \qquad i_4 \rightarrow I_4$	R_4					
		Г		₩ ,					
			$R_3 \mathbf{\xi}$						
			$\int \mathbf{A} \uparrow i_3$						
			_ _						
		$\xrightarrow{\iota_1} R_1$							
	 ↓	+							
	1		+/	+					
	v_{I}			vo					
				_					
	=	늗							
			Figure 2B						
2C.	Build the	free-running ram	p generator by apply	ing the concept of	3	5	1, 3,	1, 5	3
L	astable mu	ltivibrator.					12		