

INTERNATIONAL CENTRE FOR APPLIED SCIENCES MAHE, MANIPAL

B.Sc. (Applied Sciences) in Engg. End – Semester Theory Examinations – NOV 2021 I SEMESTER - MATHEMATCS-I (IMA 111)

Time: 3 Hours Date: 18 NOV 2021 Max. Marks: 50

- ✓ Answer ALL questions.
- ✓ Missing data, if any, may be suitably assumed.
- 1A. For the cardiode $r = a(1 + cos\theta)$, show that $\frac{\rho^2}{r} = constant$. Deduce that if ρ_1 and ρ_2 are radii of curvature at the extremities of a chord through the pole, then $\rho_1^2 + \rho_2^2 = \frac{16a^2}{9}$.
- 1B. Find the evolute of astroid $x = a\cos^3\theta$ and $y = a\sin^3\theta$.
- 1C. Prove that for any quadratic function $px^2 + qx + r$, the value of θ in lagranges mean value theorem is always half for every interval [a, b].

4+3+3

2A. If
$$y^{1/m} + y^{-1/m} = 2x$$
. Prove that
$$(x^2 - 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0.$$

- 2B. Expand $y = \log_e(1 + \sin^2 x)$ in macluarin's series upto term containing x^6 .
- 2C. Evaluate $\int_0^\infty \frac{x^2}{(1+x^2)^{\frac{7}{2}}} dx$

4+3+3

3A. Consider the following census data

Year:	1961	1971	1981	1991	2001
Population	22	26	32	44	48
in 1000's:					

Estimate the change in population from 1998 – 2000.

- 3B. Find the angle of intersection of the curves $r = alog\theta$ and $r = \frac{a}{log\theta}$
- 3C. Test for convergence or divergence of the following series

- 4A. Trace the curve $xy^2 = a^2(a x)$
- 4B. Using Newtons divided difference formula evaluate f(8) and f(15)

x:	4	5	7	10	11	13
f(x):	48	100	294	900	1210	2028

4C. Evaluate $\lim_{x \to 0} \frac{\left[1+x\right]^{1/x} - e^{-\frac{ex}{2}}}{x^2}.$

4+3+3

5A. Find the interval of convergence of the following series

$$x - \frac{x^2}{\sqrt{2}} + \frac{x^3}{\sqrt{3}} - \frac{x^4}{\sqrt{4}} + \cdots \dots$$

- 5B. Find the area of the region lying above x-axis and included between the circle $x^2 + y^2 = 2ax$ and the parabola $y^2 = ax$.
- 5C. Find the perimeter of the curve $r = a(\cos\theta + \sin\theta)$, $0 \le \theta \le \pi$.

4+3+3

000000