Reg. No.

INTERNATIONAL CENTRE FOR APPLIED SCIENCES (MAHE Manipal) I SEMESTER B. Sc. (Applied Sciences) in Engg. End – Semester Theory Make-up Examination – March 2022 SUBJECT: MATHEMATICS -I (MA 111) (BRANCH: COMMON TO ALL)

Time: 3 Hours	Date: Wednesday 23 March 2022	Max. Marks: 50			
 ✓ Answer ALL Questions. ✓ Missing data, if any, may be suitably assumed. 					
1A.	Trace the curve $r = a\cos(2\theta)$, $a > 0$				
1B.	Test whether the following series is convergent o	or divergent, $\sqrt[3]{n^3+1}-n$			
1C.	Prove that if $0 < a < b$, $\frac{b-a}{1+b^2} < (\tan^{-1}b - \tan^{-1}b)$	$a\Big) < \frac{b-a}{1+a^2}$			
		(4+3+3)			
2A.	Expand $y = \log(1 + \sin^2 x)$ in Maclaurin series u	upto the term containing x^4			
2B.	Find the volume generated by an arc of the parabolic to the latus rectum about x axis.	bla $y^2 = 4ax$ from the vertex			
2C.	Verify Cauchy's mean value theorem for $f(x)$ <i>a</i> , <i>b</i> > 0 and hence find the value of <i>c</i> .	$=x^2, g(x)=x^4 \text{ in } [a, b],$			

(4+3+3)

3A. Using Newton's divided difference formula, find f(8) and f(15) from the following data

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

3B. Evaluate
$$\int_{2}^{3} (x-2)^{4} (3-x)^{5} dx$$

3C. Evaluate
$$\lim_{x \to 0} \left[\frac{a}{x} - \cot\left(\frac{x}{a}\right) \right]$$

(4+3+3)

- **4A.** Find the interval of convergence of the following series $\frac{x}{1+\sqrt{1}} + \frac{x^2}{2+\sqrt{2}} + \frac{x^3}{3+\sqrt{3}} \dots \dots$
- **4B.** Find the length of the arc of parabola $x^2 = 4ay$ measured from the vertex to one extremity of latus rectum.
- 4C. Show that evolute for the curve $x^{2/3} + y^{2/3} = a^{2/3}$ is $(x+y)^{2/3} + (x-y)^{2/3} = 2a^{2/3}$ (4+3+3)
- 5A. (a) Find $\frac{dS}{dx}$ for the curve $x^{2/3} + y^{2/3} = a^{2/3}$

(b) Find
$$\frac{dS}{dt}$$
 for the curve $x = ae^t \sin t$, $y = ae^t \cos t$

- **5B.** Show that the curve $r^n = a^n \sec(n\theta + \alpha)$ and $r^n = b^n \sec(n\theta + \beta)$ intersects at an angle which is independent of a and b.
- 5C. Find the *n*th derivative of the function $f(x) = \frac{1}{1 x x^2 + x^3}$ (4+3+3)