

INTERNATIONAL CENTRE FOR APPLIED SCIENCES (MAHE)

III SEMESTER B.Sc. (Applied Sciences) MAKE -UP EXAMINATION – January 2022 SUBJECT: ANALOG ELECTRONIC CIRCUITS (IEC 231)

(BRANCH: CS)

Timing: 3 hours

DATE: 12th January 2022 Max. Marks: 50

✓ Answer All questions.

✓ All questions carry equal marks.

✓ Missing data, if any, may be suitably assumed

- 1A The dc common base current gain for a certain transistor is, $\alpha_{dc} = 0.998$. Determine the emitter current I_E , if the base current is $I_B = 40\mu A$. Assume that the reverse saturation current, $I_{CBO} = 2\mu A$. Also determine I_{CEO} .
- 1B For the circuit in **Fig. Q1B**, $\mu_n C_{ox} = 100 \ \mu \text{A/V}^2$ and $V_{TH} = 0.4V$. Calculate
 - i) Drain current.
 - ii) If the gate voltage increases by 20 mV, what is the change in the drain voltage?
 - iii) What choice of R_D places the transistor at the edge of the triode region with value of I_D as in part i)?
 - iv) Determine the value of $W/_L$ that places M₁ at the edge of saturation with V_{GS} as in part i).

$$V_{DD} = 1.8 V$$

$$R_{D} \ge 0.5 k \Omega$$

$$I_{D} = X$$

$$M_{1} = \frac{20}{0.18}$$

Fig Q1B

- 2A With suitable diagrams, explain how power amplifiers are classified based on the operating point.
- 2B In an RC phase shift oscillator using FET, the value of resistors and capacitors in the feedback circuit are $R = 150 \text{ K}\Omega$ and C = 0.25 Nano Farads. Determine the frequency of oscillation. If the value of $R_D=1k\Omega$ and $g_m=2500$ millimhos, find the gain of the amplifier.
- 3A Draw the self-bias circuit for the transistor and explain. Describe with detailed analysis how bias stability is achieved.

- 3B In a fixed bias circuit silicon transistor with β =100 is used. Draw the DC load line and determine the operating point. Given R_B=200K Ω , Vcc=10V and R_C=2K Ω . Assume V_{BE}=0.7V.Neglect I_{CO}. Draw the circuit diagram
- 4A Draw the circuit diagram of Class 'A 'power amplifier and derive an expression for efficiency.
- 4B With a neat circuit diagram, explain the RC coupled amplifier and its frequency response.
- 5A With the help of a block diagram, explain negative feedback. Derive an expression for gain in a negative feedback amplifier. Mention the application of positive feedback.
- 5B For the circuit shown in Fig Q5B, determine IBQ, ICQ, VCEQ, VC, VE, VB. Draw the load line.

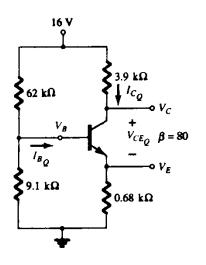


Fig. Q5B