

INTERNATIONAL CENTRE FOR APPLIED SCIENCES

(MAHE)

III-SEMESTER B.Sc. (Applied Sciences) DEGREE EXAMINATION – NOV/DEC 2021 SUBJECT: MATHEMATCS-III (IMA 231) (BRANCH: CHEMICAL/CS)

Time: 3 Hours 17 November 2021 Max. Marks: 100

- ✓ Answer ANY FIVE FULL Questions.
- ✓ Missing data, if any, may be suitably assumed

1.

a. Solve
$$y(1+x^2)^{\frac{1}{2}}dy + x\sqrt{1+y^2}dx = 0$$

b. Solve
$$\frac{dy}{dx} - \frac{y}{x} + \cos ec \frac{y}{x} = 0$$
, $y(1) = 0$

c. Solve
$$(4r^2s - 6)dr + r^3ds = 0$$

(7+6+7)

2.

a. Solve
$$(D^3 - 3D^2 + 4D - 2)y = e^x + \cos x$$

b. Solve
$$(ye^{xy} + 4y^3)dx + (xe^{xy} + 12xy^2 - 2y)dy = 0$$
, $y(0) = 2$

c. Solve
$$(D^2 + 1)y = \cos ecx$$
 by method of variation of parameters.

(7+6+7)

3.

- a. Applying Taylor's series method, find the value of y(1.1) correct to four decimal places given that $\frac{dy}{dx} = xy^{\frac{1}{3}}$, y(1) = 1
- b. Solve by the method of indicated transform $u_{xx} + u_{xy} 2u_{yy} = 0$ by using the transformation v = x + y and z = 2x y.

c. Solve D.E by Laplace Transform
$$y'' + 4y' + 8y = 1$$

 $y(0) = 0, y'(0) = 1.$

(6+7+7)

4.

a. Solve by Partial fraction
$$F(S) = \frac{s^3 - 3s^2 + 6s - 4}{(s^2 - 2s + 2)^2}$$

b. Find the Laplace transform of a periodic function
$$f(t) = \begin{cases} \frac{t}{a}, 0 < t < a \\ \frac{1}{a}(2a-t), a < t < 2a \end{cases}$$

with f(t) = f(t+2a) and sketch the graph.

c. Solve by the method separation of variables
$$4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$$
 given $u(0, y) = 2e^{5y}$. (7+6+7)

5.

a. Find Laplace transform of saw-toothed wave of period T given $f(t) = \frac{K}{T}t$.

b. Find
$$L^{-1}\left\{\frac{2s-5}{4s^2+25}+\frac{4s-18}{9-s^2}\right\}$$

c. Solve
$$(D^2 + 1)x = t\cos 2t$$
 given $x = 0, \frac{dx}{dt} = 0, at$ $t = 0$. (6+7+7)

6.

- a. Show that $f(z) = \cosh z$ is analytic and hence find $f^{I}(z)$.
- b. Show that the following function is harmonic also determine the corresponding analytic function f(z) and find its conjugate $u = \sin x \cosh y + 2\cos x \sinh y + x^2 y^2 + 4xy$.

c. Evaluate
$$\int_{1-i}^{2+i} (2x+iy+1)dz$$
 along $x=t+1$ and $y=2t^2-1$. (6+7+7)

7.

- a. Find all the Taylor's and Laurent's series of $f(z) = \frac{3-2z}{Z^2-3z+2}$ at z=0
- b. Evaluate by Residue $\oint \frac{z+2}{z(z-1)} dz$ where i). $c:|z| = \frac{1}{2}$

ii).
$$c:|z|=2$$
 iii. $c:|z+1|=\frac{1}{2}$

c. Solve the linear differential Equation
$$y''(x) + 2y'(x) + y(x) = x$$
, $y(0) = -3$, $y'(0) = 0$

8.

- a. Solve $\frac{dy}{dx} + y = y^2(\cos x \sin x)$
- b. Solve by Convolution Theorem $F(S) = \frac{1}{(s^2 + 4)(s + 1)^2}$
- c. State and prove Cauchy's integral formula. (6+7+7)

IMA 231