

III SEMESTER B.TECH. (AERONAUTICAL ENGINEERING) END SEMESTER ONLINE PROCTORED EXAMINATIONS (PART B), JAN 2022 SUBJECT: FLUID MECHANICS [AAE 2156]

REVISED CREDIT SYSTEM

(31/01/2022)

Duration: 75 minutes

Max. Marks: 20

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data if any, may be suitably be assumed.
- Use of supplied data sheet is permitted

Q.	Question	Max.	CO	BT
No		Marks		Level
1A	An inclined rectangular sluice gate AB is 1.2 m x 5 m (as shown in figure) is	(3)	CO2	L5
	installed to control the discharge of water. The end A is hinged. Determine			
	the force normal to the gate applied at point B to open it.			
	Free water surface			
	50° mm ^m 5 m 5 m A 2 m A			
1B	Briefly describe the following.	(3)	CO1	L2
	1. Drag in submerged bodies		CO2	
	2. Coefficient of velocity		CO3	
	3. Transient flow		CO4	
	4. Critical Reynolds number		CO5	
	5. Energy thickness of boundary layer			
	6. Pitot static probe			
				1

1C	The ratio of lengths of a submarine and its model is 20:1. The speed of the	(4)	CO4	L5
	sub-marine prototype is 10 m/s. The model is to be tested in a wind tunnel.			
	Find the speed of air in the wind tunnel and the ratio of drag between the			
	model and prototype. Take the value of kinematic viscosity for sea water and			
	air as 0.012 stokes and 0.016 stokes, respectively. The density of sea water			
	and air are given as 1030 kg/m ³ and 1.24 kg/m ³ , respectively.			
2A	Find the displacement and momentum thickness for the velocity distribution	(4)	CO3	L5
	given by			
	$\frac{u}{U} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)^2$			
2B	A fluid field is given by $V = x^2 y i + y^2 z j - (2xyz + yz^2) k$.	(3)	CO2	L5
	Prove that it is a case of possible steady incompressible flow field. Calculate			
	the velocity and acceleration at the point (2,1,3).			
2C	With suitable figures, explain the conditions of equilibrium of submerged and	(3)	CO2	L2
	floating bodies.			