Reg. No.					

III SEMESTER B.TECH. (AERONAUTICAL ENGINEERING) END SEMESTER EXAMINATIONS, JANUARY 2022

SUBJECT: : INTRODUCTION TO AEROSPACE ENGINEERING (AAE 2157)
REVISED CREDIT SYSTEM

(27/01/2022)

Duration: 1 Hour 15 minutes Max. Marks: 20

Instructions to Candidates:

- Answer all the questions.
- **❖** Assume missing data if any.

QN	Question	Max marks	СО	BT
1A)	An airplane weighing 5000 lb is flying at standard sea level	(04)	CO2	Apply
	with a velocity of 200 mi/h (293.3 ft/s). At this velocity the L/D			
	ratio is a maximum. The wing area and aspect ratio are 200			
	ft ² and 8.5, respectively. The Oswald efficiency factor is 0.93.			
	Calculate the total drag on the airplane.			
1B)	Explain range and endurance of propeller powered aircraft	(03)	CO3	Understand
	with all necessary diagrams and equations.			
1C)	Illustrate bielliptic orbital maneuver with all necessary	(03)	CO5	Analyze
10,	diagrams and equations.	(03)		7 tharyze
2A)	Give a brief overview on airbreathing propulsion systems.	(04)	CO5	
2B)	Using standard atmosphere formulae, calculate the pressure	(03)	CO1	Apply
	at a geopotential altitude of 5 km ($T = 15 - 0.0065h$). Use T			
	in Kelvin.			
2C)	What is the application of dihedral configuration in aircrafts.	(03)	CO4	Understand

AAE2157 Page 1 of 1