

THIRD SEMESTER B.TECH. (AUTOMOBILE ENGINEERING) MAKEUP EXAMINATIONS JAN 2022

SUBJECT: ENGINEERING MATHEMATICS IV [MAT 2151]

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

1A.	Solve $x^2y'' + xy' + (x^2 - 3)y = 0$, $y(1) = 0$, $y(2) = 2$ with $h = 0.25$.	4M
1 B .	With step size $h = 0.5$, solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -1$, $ x < 1$, $ y < 1$, u(1, y) = 0, $u(-1, y) = 0$, $u(x, 1) = 0$, $u(x, -1) = 0$.	3M
1C.	Solve $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$, $0 < x < 1$, $t > 0$ with $u(x, 0) = \frac{\partial u}{\partial x}(x, 0) = 0$, $u(0, t) = 0$, $u(1, t) = 100 \sin \pi t$. Compute u for four-time step with $h = 0.25$.	3M
2A.	With $h = 0.25$, solve following equation using Crank-Nicolson's method $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}; 0 < x < 1; t > 0; u(x, 0) = 100(x - x^2); u(0, t) = 0 = u(1, t)$ for one time steps.	4 M
2B.	Obtain Fourier expansion of $f(x) = \frac{1}{2}(\pi - x)$ in $-\pi < x < \pi$.	3 M
2C.	Determine the constant term and the first cosine and sine terms of the Fourier series expansion of y from the following data by Harmonic analysis. (x values are in terms of degree) x 0 45 90 135 180 225 270 315 y 2 3/2 1 1/2 0 1/2 1 3/2	3M
3A.	Find the Fourier Transform of $e^{-a^2x^2}$, $a > 0$ and Hence deduce that $F\left(e^{-\frac{x^2}{2}}\right) = e^{-\frac{s^2}{2}}$.	4 M
3B.	Find the directional derivative of the equation $\phi = x^2yz + 4xz^2$ at $(1, -2, -1)$ along $2i - j - 2k$.	3M
3C.	Find the value of the constant ' a ' such that	3M

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

	$\vec{F} = (axy - z^3)i + (a - 2)x^2j + (1 - a)xz^2k$ is irrotational and	
	hence find a scalar function such that $\nabla \phi = \vec{F}$.	
4A.	Apply Green's theorem to evaluate $\int_C [(2x^2 - y^2)dx + (x^2 + y^2)dy]$, where C is the boundary of the area enclosed by the x-axis and the upper half of the circle $x^2 + y^2 = a^2$.	4M
4B.	If a force $\vec{F} = 2x^2y\hat{\imath} + 3xy\hat{\jmath}$ displaces a particle in the XY-plane from (0, 0) to (1, 4) along a curve $y = 4x^2$. Find the work done.	3M
4C.	Evaluate $\iint_S F.n dS$ where $F = 4xzi - y^2j + yzk$ where S is the surface of the cube bounded by $x = 0$, $x = 1$, $y = 0$, $y = 1$, $z = 0$, $z = 1$.	3M
5A.	Verify Stoke's theorem for $F = (2x - y)i + yz^2j - y^2zk$, where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary	4 M
5B.	Solve $y^3 \frac{\partial z}{\partial x} + x^2 \frac{\partial z}{\partial y} = 0$, by method of separation variables.	3M
5C.	Solve $u_{xx} + u_{xy} - 2u_{yy} = 0$ using the transformation $v = x + y$, z = 2x - y.	3M