Reg. No.											
----------	--	--	--	--	--	--	--	--	--	--	--

III SEMESTER B.TECH. END SEMESTER EXAMINATIONS 22 JANUARY 2022

SUBJECT: CHEMICAL ENGINEERING THERMODYNAMICS - I [CHE 2151] REVISED CREDIT SYSTEM

Time: 75 min Max. Marks: 20

Instructions to Candidates:

❖ Answer ALL questions & missing data may be suitably assumed

1A	The potential energy of a body of mass 20 kg is 1.8 kJ. What is the height of the	3			
	body from the ground? If a body of 15 kg is moving at a velocity of 150 m/s, what				
	is its kinetic energy?				
1B	Calculate ΔU and ΔH in J for 2 kmol water, as it is vapourized at the constant	3			
	temperature of 373 K and constant pressure of 101.3 kPa. The specific volume of the				
	liquid and vapour at these conditions are 1.04×10^{-3} and 1.675×10^{-3} m ³ /km				
	respectively; 2030 J of heat is added to water for this change.				
1C	A 15 m ³ tank contains 45 kmol of a gas at 210 bar and 935 K. Determine the critical	4			
	temperature of the gas using generalized compressibility factor method. Given that				
	the critical pressure is 50 bar.				
2A	A Carnot heat engine receives 700 kJ of heat per cycle from a high-temperature heat	3			
	reservoir at 752°C and rejects heat to a low-temperature heat reservoir at 40°C.				
	Determine				
	(i) The thermal efficiency of this Carnot engine and				
	(ii) The amount of heat rejected to the low-temperature heat reservoir				
2B	The molar volume of an organic liquid at 400 K and 2 bar is 0.15 m ³ /mol and its	3			
	coefficient of expansion is 2.5×10^{-3} K ⁻¹ . What would be the change in entropy if				
	the pressure is increased to 40 bar at 400 K?				
2C	A vapour compression refrigeration system with ammonia as the working fluid is to	4			
	operate between 266 K and 300 K. Determine the following:				
	(i) COP, given that the enthalpy of saturated vapour at $266 \text{ K} = 656 \text{ kJ/kg}$ and				
	enthalpy of superheated vapour leaving the compressor = 724 kJ/kg, enthalpy				
	of saturated liquid at $300 \text{ K} = 144 \text{ kJ/kg}$.				
	(ii) COP, if a temperature approach of 5 K is necessary in the evaporator and				
	condenser and the efficiency of the compressor is 75%. Enthalpy of saturated				
	vapour at 261 K = 652 kJ/kg and the enthalpy of superheated vapour entering				
	the condenser = 758 kJ/kg , enthalpy of saturated liquid at $305 \text{ K} = 159 \text{ kJ/kg}$.				