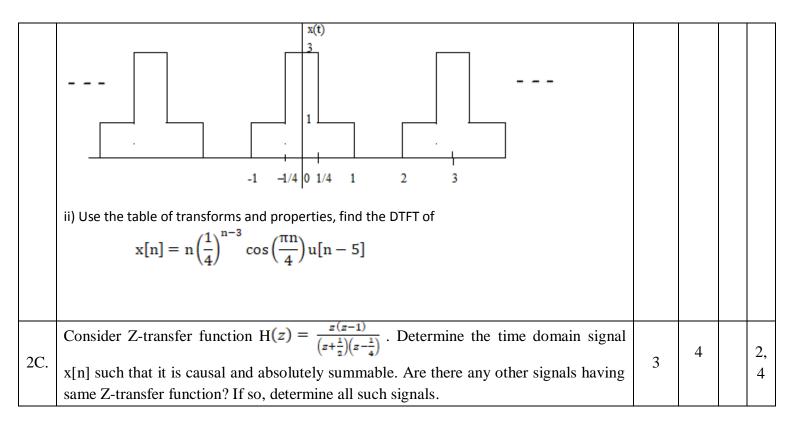
Reg. No.

THIRD SEMESTER BTECH. (E & C) DEGREE PROCTORED ONLINE EXAMINATION JANUARY 2022 SUBJECT: SIGNALS AND SYSTEMS (ECE - 2155)


TIME: 75 min (9.20 AM to 10.35 AM)

MAX. MARKS: 20

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.
- Answer script must be a single pdf, good visibility of all texts and numbers.
- Name the file as: RegistrationNumber_SubjectCode_dd_JAN2022
- Upload correct pdf properly named well before 10.45 AM

Q. No.	Questions	M*	C*	A *	B *
1A	i) Using convolution sum, determine the output of causal 4-point moving averaging system if the input to the system is 10-length causal rectangular window sequence.ii) Using the relation between step response and impulse response, determine the step response of causal 4-point moving averaging system.	4	3		4
18	Consider two signals x(t) and y(t) as shown below. $x(t) \xrightarrow{A} \xrightarrow{0} t \xrightarrow{t} t$ i) Determine correlation r(τ) between x(t) and y(t) for $\tau \ge 0$ with A=1 ii) Sketch z(t) = $\sum_{k=1}^{3} y\left(\frac{t}{k}\right)$ and calculate the energy of z(t)	3	1		3, 4
1C	Is the signal $x[n] = sin(\pi n/2).cos(\pi n/3)$ periodic? If so, determine the fundamental period. Find odd part of $x[n]$.	3	1		1, 2
2A	The impulse response of an LTI system is given by $h(t) = cos(2\pi t) \left(\frac{sin(\pi t)}{\pi t}\right)$. Obtain and plot the frequency response. Determine the output of this system when the input is $x(t) = \sum_{m=-\infty}^{\infty} (-1)^m \delta(t-m)$.	4	3		3, 4
2B.	i) Using the defining equation, determine the appropriate Fourier representation of the following signal	3	2		3

