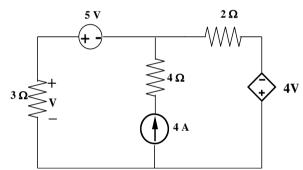


III SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER PROCTORED ON-LINE EXAMINATIONS

JANUARY 2022

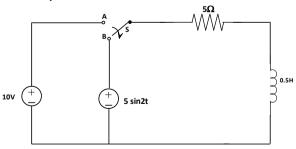

ELECTRICAL CIRCUIT ANALYSIS [ELE 2153]

REVISED CREDIT SYSTEM

Time: 75 Minutes + 10 Minutes	Date: 20 January 2022	Max. Marks: 20

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitably assumed.
- Time: 75 minutes for writing + 10 minutes for uploading.
- **1A.** For the circuit shown below, determine the current flowing through the 2Ω resistor using superposition theorem.



1B. Compute the convolution integral y(t) = x(t) * h(t) of the following signals:

 $x(t) = 2\{u(t) - u(t-1)\}$ and h(t) = u(t-2) - u(t-4)

Plot the relevant waveforms for x(t), h(t), and y(t).

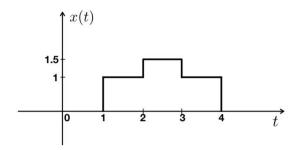
1C. In the circuit shown below, switch 'S' is changed from A to B at t = 0. Find the expression for the current through the inductor for t > 0 using Laplace transform analysis.

2A. Determine the complex exponential Fourier series representation of the following signal:

$$x(t) = \cos 3t + \sin 6t$$

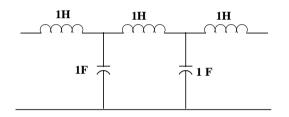
Also, list the Fourier coefficients.

ELE 2153


(02)

(03)

(03)


(04)

2B. Find the Fourier transform of the signal x(t) shown below. The signal x(t) is a linear combination of scaled and shifted versions of $x_1(t) = u(t + 0.5) - u(t - 0.5)$ and $x_2(t) = u(t + 1.5) - u(t - 1.5)$

(04)

2C. Determine the transmission parameters of the network by decomposing the network shown below into two networks in cascade.

(04)