Reg. No.

III SEMESTER B.TECH. (ELECTRICAL & ELECTRONICS ENGINEERING) MAKE UP EXAMINATIONS, APRIL 2022

SUBJECT: ELECTRICAL MACHINERY-1 [ELE 2154]

REVISED CREDIT SYSTEM

Time: 3 H	lours	26 April 2022	Max. Marks: 50		
Instructions to Candidates:					
*	Answer ALL the questions.				
*	Missing data may be suitably as	ssumed.			

- Write a technical note on different types of core construction in transformers. (02)
- **1B.** In a 30 kVA, 2,000 / 200 V transformer, the iron and full-load copper losses are 360 W and 420 W respectively. Calculate the transformer's efficiency for its operation with 75% of full load, at 0.8 lagging power factor.
- 1C. At normal voltage and frequency, an 800 kVA single-phase transformer draws an input power of 7.5 kW on no-load. With reduced voltage applied and full-load current flowing in short-circuited secondary winding, it draws an input power of 14.2 kW. If the transformer operates on the following duty cycle in a day, calculate its all-day efficiency.

Duration (hours)	Load (kW)	Load power factor
6	500	0.8
4	700	0.9
4	300	0.95
10	Nil	

(05)

(03)

2A. A 150 kVA, 3000 / 500 V, single-phase transformer; when tested, gave the following results:

Open-circuit test: 500 V, 8 A, 900 W

Short-circuit test: 100 V, 50 A, 2,200 W

Draw the approximate equivalent circuit of the transformer as referred to its LV side and label all the parameters.

2B.	Draw and label the complete phasor diagram of a practical transformer, which is supplying a leading power factor load. Assume transformation ratio of 1.	(03)
2C.	Describe the importance and application of delta-star connection of three phase transformers	(02)
3A.	A three-phase, 4-pole, 60Hz, induction motor has its rotor induced current at 3Hz at a particular operating condition. Find the speed of rotating magnetic field and speed of the rotor, with respect to stator reference.	(02)
3B.	Explain how a slip ring induction motor can provide better starting torque compared to squirrel cage type.	(04)
3C.	Consider a 415V, 6pole, 50Hz induction motor operating at 4% slip. The useful power output is 1kW. The machine has stator losses of 60W and rotational losses of 65W. Calculate its efficiency at this operating condition.	(04)
4A.	Draw the power flow diagram of the motor in Q No. 3C.	(02)
4B.	Explain the slip-torque characteristics of a single-phase induction motor. Also, with the help of double field revolving theory, explain its non-self starting nature.	(05)
4C.	Technically compare the advantages and disadvantages of squirrel-cage and slip-ring construction of induction motor.	(03)
5A.	From the following test data given for a three phase 90HP, 3.3kV, 25A, 6pole 50Hz squirrel cage induction motor with star connected stator, develop the approximate equivalent circuit of the machine.	
	No Load test (line values): 3.3kV, 4.5A, 24000W	
	Blocked Rotor test (line values): 400V, 25A, 15000W	
	DC resistance per phase: 3Ω .	(05)
5B.	In a short-shunt compound generator, the terminal voltage is 220 V when generator delivers 100 A. Determine the total power generated.	
	Given that shunt field, series field, diverter and armature resistances are 90 Ω , 0.014 Ω , 0.02 Ω and 0.022 Ω , respectively.	(03)
5C.	Describe the process of commutation with the help of necessary diagrams in a DC machine? Explain the methods to improve commutation.	(02)