END SEMESTER EXAMINATIONS (JANUARY 2022) - QUESTION PAPER

- PART A

(Copy)

COURSE CODE : ICE 2152

COURSE NAME : Digital Electronic Circuits

SEMESTER : III

DATE OF EXAM : 29/01/2022 DURATION : 45 + 3 minutes

Instructions for Students:

- (1) ANSWER ALL THE QUESTIONS.
- (2) EACH QUESTION CARRIES 1 MARK.
- (3) YOU ARE INSTRUCTED TO INFORM THE INVIGILATOR AFTER SUBMISSION OF THIS FORM IN THE CHAT SECTION.

* F	* Required	
* This form will record your name, please fill your name.		
1. STUDENT NAME: *		

The value must be a number
3. Which logic gate is a basic comparator? (1 Point)
○ NAND
○ NOR
○ X-OR
○ X-NOR
4. The logic family which gives complementary output is (1 Point)
○ CMOS
○ ECL
○ TTL
○ MOS
5. The terms which cannot be combined further in the tabular method is called (1 Point)
Selective prime implicants
Essential prime implicants
Prime implicants
○ Implicants

2. REGISTRATION NUMBER: *

6. The most popular and most widely used IC family is (1 Point)
○ MOS
○ TTL
CMOS
7. An algorithmic state machine is not the same as (1 Point)
Combinational circuit
Synchronous sequential circuit
Clocked sequential circuit
Finite state machine
8. A 32:1 mux can be designed using
(1 Point)
○ Two 16:1 mux only
Two 16:1 muxs and one two input AND gate
Two 16:1 muxs and two two input OR gate
Two 16:1 muxs and one two input OR gate

9. Which circuit hazards must be eliminated? (1 Point)
Sequential circuit
O Multiplexer
Combinational circuit
O Decoder
10. The logic family with both logic levels negative is (1 Point)
○ MOS
○ ECL
○ cmos
○ TTL
11. A combinational circuit which is used to send data coming from a single source to two or more separate destinations is called (1 Point)
O An encoder
○ A decoder
A demultiplexer
A multiplexer

12. An ASM chart can be (1 Point)
Converted into a state table.
Implemented using gates and flip flops.
Onverted as state diagram & state table and can be implemented using gates and flip flops.
Converted into a state diagram.
13. For designing a finite state machine K-maps can be used for minimizing the (1 Point)
Number of flip flops.
Excitation expressions of flip flops.
Excitation and output logic expressions.
Output logic expressions.
14. What conditions should be given to the asynchronous inputs of the flip flops for the operation of a Ring counter?
(1 Point)
Clearing all the flip-flops.
Presetting one flip-flop and clearing all others.
Clearing one flip-flop and presetting all others.
Presetting all the flip-flops

15. The output of a clocked sequential circuit independent of the input. The circuit is a (1 Point)
○ Moore machine
Sequence detector
Serial clock adder
Mealy machine
16. Synchronous counters eliminate the delay problems encountered with asynchronous (ripple) counters because the: (1 Point)
Input clock pulses are applied only to the last stage.
Input clock pulses are applied only to the first and last stages.
O Input clock pulses are not used to activate any of the counter stages.
Input clock pulses are applied simultaneously to each stage.
17. In a 4-bit Johnson Counter, negative edge triggered J-K flip flops are used. Initial condition of the counter is 1100. What will be the output of the counter on the 5th clock pulse?
(1 Point)
O0001
O 1100
O011
O111

21. An error code 0011101 is detected at the receiver end for an even parity Hamming code. The error is in bit position (1 Point)
○ 6
<u> </u>
○ 3
22. Time delay device is the memory element of (1 Point)
Clocked flip flops
Asynchronous circuits
Unclocked flip flops
Synchronous circuits
23. The race in which the stable state does not depend on an order is called
(1 Point)
Critical race
O Defined race
Non-critical race
O Identical race

(1 Point)
A 16:1 multiplexer
An 8:1 multiplexer and one inverter
Two 8:1 multiplexer and one 2:1 multiplexer
Any of the above
25. Which one is the suitable to detecting the hazard in circuit? (1 Point)
C Karnaugh map
Boolean expression
Cogic gates
O Universal gates
26. The adder preferred for applications where circuit minimization is more important than speed is (1 Point)
Serial adder
○ Full-adder
O Parallel adder
○ Half-adder

(1 Point)
○ 6 flip flops
4 flip flops
3 flip flops
11 flip flops
28. The minimum number of 2-input NAND/NOR gates required to realize a half-adder is (1 Point)
○ 3
○ 6
29. A demultiplexer is used to
(1 Point)
Select data from several inputs and route it to a single output
Perform aritmetic division
Steer data from a single input to one of the many outputs
Perform parity checking

27. A sequential circuit with 11 states will have

30. A decision box in an ASM chart
(1 Point)
Opes not have exit paths.
Has two exit paths.
Has only one exit path.
Has one entry and one exit path.
31. The group of bits 101101 is serially shifted (right-most bit first) into a 6-bit parallel output shift register with an initial state 010101. After the fifth clock pulse, the register contains (1 Point)
O 110101
O 101010
O10101
O11010
32. The characteristic equation of a J-K flip flop is (1 Point)
$\bigcirc Q(n+1) = JQn + KQn'$
$\bigcirc Q(n+1) = J'Qn' + KQn$
$\bigcirc Q(n+1) = JQn' + K'Qn$
$\bigcirc Q(n+1) = J'Qn + K'Qn$

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms