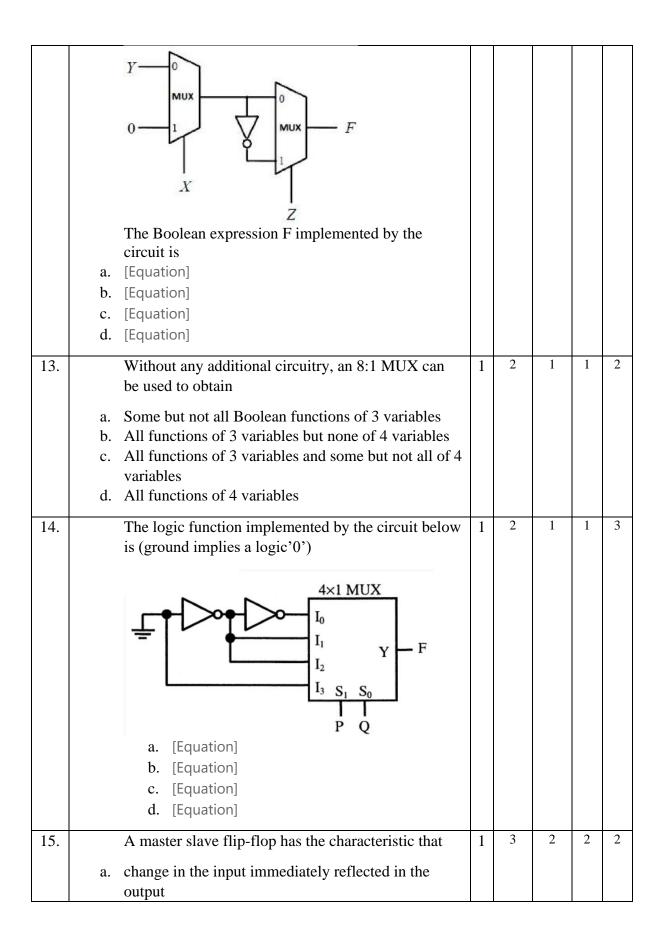
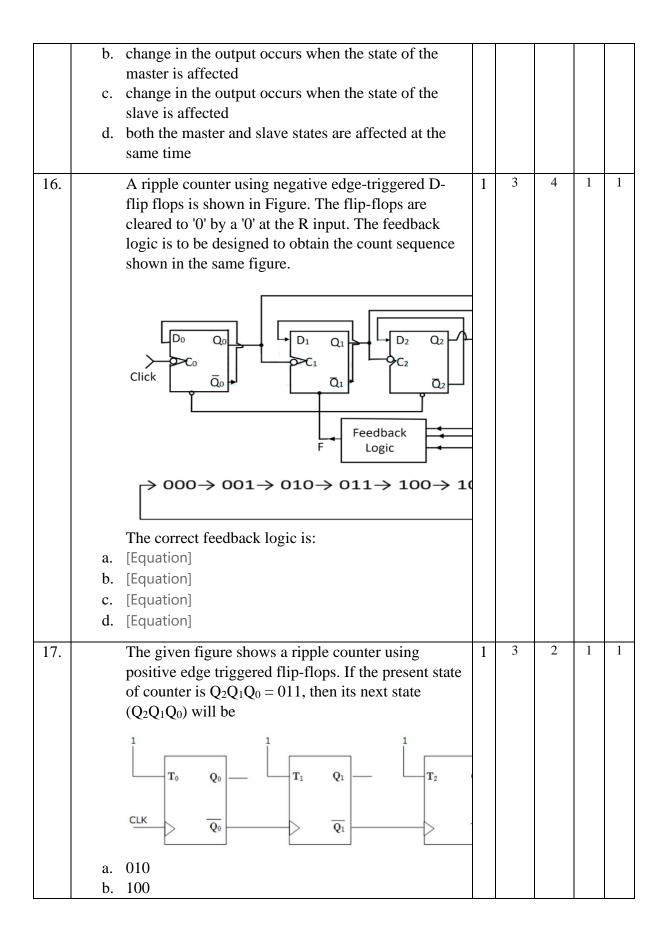
DEPARTMENT OF MECHATRONICS III SEMESTER B. TECH MECHATRONICS END SEM EXAM

Subject: Digital System Design Time: 45 Min + 3 Min

Subject Code: MTE 2152 Date: 24/1/2022


Part-A


Note: All Questions carry equal mark (One mark each). All questions are compulsory and there is No negative marking for wrong answer.

	answer.					
Q. No		M	СО	РО	L O	B L
1.	Which gate is a basic logic gate? a. XOR Gate	1	1	1	1	2
	b. NOT Gatec. NAND Gated. NOR Gate					
2	De Morgan's Law states that a. $A^{+}B^{-}=AB^{-}A^{-}+B^{-}=AB^{-}$ b. c. $AB^{-}AB^{-}$ d. = e. $A^{-}A^{-}$ f. BB g. h. $AB^{-}AB^{-}$ i. = j. $A^{-}A^{-}$ k. + l. BB m. n. $AB^{-}AB^{-}$ o. = $A + B$	1	1	1	1	1
3	In negative logic a. 1-high, 0-low b. 0-high, 1-low c. 1-high, 1-low d. 0-high, 0-low	1	1	1	1	1

4	Convert the binary number 1111.0010_2 to decimal.	1	1	3	1	1
		1				
	a. 115.125					
	b. 15.125					
	c. 15 d. 1.5					
	d. 1.5					
5	2's complement representation of -17 is	1	2	1	1	2
	a. 101110					
	b. 101111					
	c. 111110					
	d. 110001					
6	Decimal 43 in hexadecimal and BCD number	1	2	1	1	1
	system is respectively.					
	a. B2, 0100 0011					
	b. 2B, 0100 0011					
	c. 2B, 0011 0100					
	d. B2, 0100 0100					
7.	Convert binary number (1101) into gray code:	1	2	1	1	1
	a. 1000					
	b. 1100					
	c. 1010					
	d. 1011					
8.	11001, 1001 and 111001 corresponds to the 2's	1	1	1	1	2
	complement representation of which one of the					
	following sets of numbers?					
	a. 25, 9 and 57 respectively					
	b6, -6 and -6 respectively					
	c7, -7 and -7 respectively					
	d25, -9 and -57 respectively					
9.	K-map for a Boolean function is shown in figure.	1	1	1	1	2
	The number of essential prime implicants for this					
	function is					

	AB					
	CD 00 01 11 10					
	00 1 1 0 1					
	01 0 0 0 1					
	a. 4					
	b. 5					
	c. 6 d. 81					
10.	The logic expression	1	1	3	1	3
10.	Y=A+A-B Y=A+A-B	1	1	5	T	5
	is equivalent to					
	a. h y adv <i>ad</i>					
	b. $Y=AB Y=AB$ c.					
	d. $Y = A - B Y = A - B$					
	е.					
	f. $Y=A-+BY=A-+B$					
	g. $V \to D K - 4 / B$					
	h. $Y=A+BY=A+B$ i.					
11.	In half adder carry output is high if inputs are	1	1	1	1	2
	a. 0,0					
	b. 1,1					
	c. 1,0 d. 0.1					
	d. 0,1		1		1	
12.	Consider the circuit shown in the figure.	1	1	3	1	3

		111					
	d.	101					
18.		Unused states are treated as Don't cares conditions	1	1	1	1	1
		during the					
	a.	Design of a circuit					
	b.	Execution					
	c.	Pulse trigger					
	d.	Edge trigger					
19.		Memory elements in clocked sequential circuits are	1	2	1	1	1
		called					
	a.	Latches					
	b.	Flip-flop					
	с.	Signals					
	d.	Gates					
20.		A counter that flows the binary sequence is called	1	3	3	2	1
		Ripple counter					
	f.	Edge counter					
	g.	Binary counter					
	h.	Level counter					
21.		Which of the follwing is not a sequential circuit?	1	3	2	1	1
	a.	Flip-flop					
	b.	Counter					
	с.	Shift register					
	d.	Multiplexer					
22.		The negative transition in flip-flops are reffered to	1	3	2	1	1
		as					
	a.	Clock					
	a. b.	Negative edge					
	c.	Positive edge					
	d.	Pulse transition					
	u.						
23.		The full form of PIPO is	1	3	2	1	1
	a.	Parallel-in Peripheral-out					
	b.	Parallel-in Parallel-out					
	с.	Peripheral-in Parallel-out					
	d.	Peripheral -In Peripheral-Out					
	l						

24.	How many test patterns are required to test the circuit using counters?	ne 1	3	2	1	1
	a. 2 ⁿ					
	(n-1)					
	c. $2^{n} - 1$ d. $2^{n} + 1$					
	d. $2^{-} + 1$					
25.	What happens if the input is low in FSM?	1	3	2	1	1
	a. Change of state					
	b. No Transition in state					
	c. Remain in a single state					
	d. Invalid state					
26.	In the FSM Diagram, what does arrow betwe	en the 1	3	2	1	1
-01	circles are represent?					
	•					
	a. Change of state					
	b. State					
	c. Output value					
	d. Initial state					
27.	FPGA stands for	1	3	2	1	1
	a. Field Program Gate Array					
	b. First Program Gate Array					
	c. Field Programmable Gate Array					
	d. First Programmable Gate Array					
28.	Many companies are transitioning to using F	PGAs 1	4	1	1	1
	for their processor designs instead of ASICs.					
	a. FPGAs always outperform an ASIC.					
	b. The development cycle of the FPGA is much					
	shorter.					
	c. FPGAs are more space-efficient.					
	d. FPGAs are both smaller and faster.					
	e. None of the above.					
29.	Most EDGA logic modules utilize a(r)	1	4	1	1	1
29.	Most FPGA logic modules utilize a(n) approach to create the desired logic functions		+			1
	a. AND array					
	b. Look-up table					
	c. OR array					
	d. AND and OR array					
	······································					

30.		In spartan-3 family architecture, which	1	4	1	1	1
		programmable functional element accepts two 18-bit					
		binary numbers as inputs and computes the product?					
	a.	Configurable Logic Blocks					
	b.	Input Output Blocks					
	с.	Block RAM					
	d.	Multiplier Blocks					

DEPARTMENT OF MECHATRONICS ENGINEERING III SEMESTER B. TECH (MECHATRONICS ENGINEERING)

END SEMESTER EXAMINATIONS PART B, JAN 2022

SUBJECT: DIGITAL SYSTEM DESIGN [MTE 2152]

Time: 75 Min + 10 Min

Date: 24/1/2022

	Max. Marks: 20						
Q. No.		Μ	СО	РО	LO	BL	
1A	Solve the given equation using VEM, to obtain the minimum SOP expression. $F(A, B, C, D, E) = \sum m(1,4,8,11,12,14,15,24,25,30) + d(6,9,13,16,17,22,23,28,29)$	5	CO1	PO1, PO3, PO12	1, 7, 13	2,3	
1B	Design a 4-bit 4 state ring counter with a single circulating '0' using 74194	3	CO3	PO1, PO2, PO3, PO12	3,7, 8,9, 13	2,3	
1C	Develop a MOD 14 counter using 7493 IC.	2	CO3	PO1, PO2, PO3, PO12	3,7, 8,13 ,18	2,3	
2A	Illustrate the dataflow Verilog code for a single bit full adder. Using this as a component, develop a Verilog code for a 4-bit full adder.	4	CO5	PO1, PO5, PO12	3,6, 8,9, 13	2,3	
2B	Demonstrate a 4 to 16 decoder, using 3 to 8 decoders.	3	CO2	PO1, PO2, PO3, PO12	2, 7, 9, 13	2,3	
2C	Construct a JK flip flop using D flip flop	3	CO3	PO1, PO2, PO3, PO12	3,7, 8,9, 13	2,3	