

DEPARTMENT OF SCIENCES, I SEMESTER M.Sc. (CHEMISTRY) END SEMESTER EXAMINATIONS, Feb 2022

Subject: Spectroscopy - I [CHM5104]

(Choice-Based Credit System, 2020)

Time: 2 Hours

Date:

14 Feb. 2022

MAX. MARKS: 40

Note: answer any four questions.

1 A. Discuss the rotational spectrum of rigid and non-rigid diatomic molecule. Write any two consequences of elasticity of the bond in the microwave spectroscopy.

1 B. Show that spectral lines are equally spaced in the vibrational spectrum of a simple harmonic diatomic molecule. Calculate the approximate wave number of the fundamental absorption peak due to the stretching vibrations of a HCl molecule. The force constant for H-Cl bond has an approximate value of 2 x 10^6 dynes/cm. The atomic masses are: H= 1.673×10^{-27} kg and Cl = 58.06×10^{-27} kg.

1 C. State and deduce Beer's law. Calculate the energy (in joules and in eV) of CO molecule in the second excited rotational level, if the inter-nuclear distance of molecule is 0.113 nm. The atomic masses are $^{12}\text{C}=1.99\text{x}10^{-26}$ kg; $^{16}\text{O}=2.66\text{x}10^{-26}$ kg

(3+3+4)

2A. Give reason for the following;

- i) Aniline shows blue shift in the acidic medium.
- ii) Ordinary glass cuvettes can't be used for recording UV spectrum
- iii) Water is used as a solvent in Raman spectroscopy

2B. Differentiate between the following;

- i) Dispersive and FTIR instruments
- ii) $\sigma \longrightarrow \sigma^*$ and $\pi \longrightarrow \pi^*$ electronic transitions
- iii) Qualitative and quantitative methods of analysis
- 2C. Describe the Woodward Fiesher rules for homo/hetero annular dienes in UV-Visible spectroscopy and Calculate the λ_{max} for 1, 4-dimenthyl cyclohex-1,3-diene.

(3+3+4)

- 3A. Describe the Quantum theory of Raman spectroscopy and write two differences between Stoke's and Anti-stoke's line.
- 3B. Describe the theory of vibrational Raman spectroscopy and calculate the bond distance of H_2 molecule if the rotational Raman spectrum of H_2 gas is found to consist of a series of Stokes and antistokes lines, the first of which appears at 345.9 cm-1 relative to the source of excitation. Given. The atomic mass of hydrogen atom is 1.68×10^{-27} kg.
- 3C. Explain the procedure for the quantitative determination of lead present in a sample of water through Atomic Absorption Spectroscopy. Mention two differences between Atomic Absorption Spectroscopy and Flame Photometry.

(3+3+4)

- 4A. Describe the interaction of X-ray and radiofrequency region of the electromagnetic spectrum with the organic molecules. Discuss any one factor influencing the intensity of spectral lines.
- 4B. Describe the following in Atomic Absorption Spectroscopy.
 - i) Solvent Interference
 - ii) Continuous Deuterium source
 - iii) Carbon atomizers
- 4C. Explain the factors responsible for the width of spectral lines. List all the symmetry operations that can be carried on NH₃.

(3+3+4)

- 5A. Explain with an example the identification of molecules possessing permanent dipole moment based on the symmetry aspects of a molecule. What is meant by a point group? Why is horizontal mirror plane not possible on H₂O?
- 5B. Give reasons for the following:
 - (i) Symmetry operations of water molecule forms an Abelian group
 - (ii) Controlling the flame temperatures is crucial in flame photometry.
 - (iii) Chopper is interposed between the hollow cathode lamp and flame in Atomic Absorption Spectroscopy.
- 5C. Determine the point group of the given molecules by following the systematic procedure.
 - i) PCl₃
 - ii) [PtCl₄]²⁻
 - iii) Staggered ferrocene
 - iv) HCl

(3+3+4)