

				-	1
Reg.					
No.					-
NO.					_

DEPARTMENT OF SCIENCES, I/III SEMESTER M.Sc (P/C/M/G) END SEMESTER EXAMINATIONS, NOVEMBER 2021

Applied Electrochemistry and Industrial Catalysis [CHM 6005] (REVISED CREDIT SYSTEM-2017)

Time:	3 Hours	Date:	MAX. MARKS: 50
Note:	(i) Answer ALL q	uestions s, and write equations wherever n	ecessary
1.A 1.B	Explain the follow (i)Trace amount embrittlement in b (ii) Rate of hygros (iii) Continuous s (iv) Velocity of fr	ving with appropriate reasoning: of sodium carbonate is e	nough to accelerate caustic ase in acid concentration nodic protection of metals affluence on erosion corrosion. ment by classical method. With
	corrosion rate me	asurement.	[4+ 6]
2.A	affecting erosion	uses for erosion corrosion? Excorrosion.	
2.B	Formulate Tafel	equation, using Butler Volmer used for corrosion rate calculation	equation. Draw Tafel plot and n. [4+6]
3.A	overcome them	imitations of electrosynthesis.	
3.B	Explain mechar hydrocarbon (ii)	f mono halogenated aromatic [4+6]	
4.A	Explain the role	of anodic and cathodic inhibitors	in corrosion control.
4.B	(i)Explain mechan	nism of (a) Poisoning (b) Fouling	in catalytic deactivation

In the above reaction based on conversion of ammonia, calculate ammonia conversion, yield and selectivity of di-imide and imide. [4+6]

- 5. A. (i) Explain Turnover Frequency (TOF) and Turnonver Number (TON) in catalyst.
 - (ii) Write requirements and characteristics of catalytic supporter.
 - (iii) Write the reaction involved in preparation of alumina (Al₂O₃).
- 5. B. (i) With neat diagram explain the fractional distillation of petroleum.

(ii) With neat diagram, explain the Fischer-Tropsch Process. [4+6]