Reg. No.		

DEPARTMENT OF SCIENCES III SEMESTER M.Sc. (Chemistry) END SEMESTER EXAMINATIONS, DECEMBER 2021

Spectroscopy – II [CHM 6101] (CBCS Scheme)

Time: 3 Hours

Date: 09 Dec 2021 MAX. MARKS: 50

Note: (i) Answer ALL questions.

(ii) Draw diagrams, and write equations wherever necessary

(iii) Given: Planck's constant (\vec{h}) = 6.626×10⁻³⁴ Js;

Avogadro number (N) = 6.023×10^{23} mol⁻¹.

Velocity of light (c) = 3×10^8 m/s

- Explain the instrumentation involved in continuous wave proton NMR. Why is TMS 1 A. preferred as the internal standard in Proton NMR?
- Why do protons appear at different chemical shift values? Describe how the anisotropic 1 B. effect and hydrogen bonding affect chemical shift values.
- Give reason 1 C.
 - i) Presence of carboxylic acid group in a sample is indicated by highly deshielded signal in ¹H NMR spectra
 - ii) In ¹H NMR spectra of molecules with terminal alkene groups, a doublet of doublet (4+4+2)peak appears instead of a triplet signal.
- i) Deduce the structure of compound using the data given below; 2 A. Molecular formula C5H10O2

Chemical Shift (ppm)	Peak area	Splitting Singlet	
11.8	1.01		
2.2	1.92	Triplet	
1.47	1.91	Multiplet	
1.21	1.9	Multiplet	
0.78	3.0	Triplet	

ii) The mass spectrum of a liquid compound gave a molecular ion which appears as a pair of peaks with equal intensity at m/z of 122 and 124. Small fragment ion peaks are observed at m/z of 107 and 109 (equal intensity), and at m/z of 79, 80, 81 and 82 (all are of roughly equal size). Large fragment ions are found at m/z of 43 (base peak), 41 and 39. Write the molecular formula of this compound.

- 2 B. i) Explain the principle involved in HPLC -mass spectrometry.

 ii) Illustrate with appropriate examples the application of isotone laboratory.
 - ii) Illustrate with appropriate examples the application of isotope labelling in mass spectrometry to determine the mechanism of reactions.
- 2 C. Explain how do you differentiate heptane and 2,2,3-trimethyl butane using proton NMR and mass spectra? (4+4+2)
- 3 A. i) Describe how chemical exchange affects the ¹H NMR spectra?
 ii) Fragmentation of the molecular ion of methylbutanone, (CH₃)₂CHCOCH₃, gives rise to dominant peaks at m/z = 71 and m/z 43. Construct a balanced equation to show how fragmentation of the molecular ion gives rise to the peak at m/z = 71.
- 3 B. Discuss the principles of Electron Spin Resonance Spectroscopy and obtain the mathematical equation for frequency of absorption in it.
- 3 C. Explain the principles of ¹⁹F NMR spectroscopy with an example. (4+4+2)
- 4 A. Explain the instrumentation and working of Nuclear Quadrupole Resonance spectrometer.
- 4 B. Compute the 13 C chemical shift (δ) values of all carbons in the following
 - (i) (Z)-3-methyl-2-pentene (correction for Z-cis is -1.1)
 - (ii) 1-fluoro-2-nitrobenzene (Incremental shift of ¹³C are as follows)

Substituent	Ipso	ortho	meta	para
F	+35.1	-14.3	+0.9	-4.5
NO ₂	+19.6	-5.3	+0.9	+6.0

- 4 C. Calculate the recoil velocity and energy of free Mössbauer nucleus, 119 Sn when emitting a γ -ray of frequency 6.98×10^{18} Hz. (4+4+2)
- 5 A. Discuss the broad band decoupled and off resonance decoupled ¹³C NMR spectra of 4-ethoxybenzaldehyde.
- **5 B.** Explain the main hyperfine interactions that can be observed in the Mössbauer spectroscopy.
- 5 C. A free electron is placed in a magnetic field of strength 1.3 T. Find out the resonance frequency of absorption, when g = 2.0023 and Bohr magnetron (μ_B) is 9.2732×10^{-24} J/T. (4+4+2)
