Reg. No.									
----------	--	--	--	--	--	--	--	--	--

I SEMESTER M.TECH (SOFTWARE ENGINEERING) END SEMESTER EXAMINATIONS, FEB 2022

SUBJECT: ADVANCED DATABASE MANAGEMENT SYSTEMS

[ICT 5152] PART B

REVISED CREDIT SYSTEM (14/02/2022)

Time: 45+3 Minutes MAX. MARKS: 30

Instructions to Candidates

- ❖ Answer **ALL** questions.
- Missing data may be suitably assumed.

	1									
1A.	Consider the following set of data objects (3,7), (4,5), (4,9), (5,8), (7,3), (7,5), (8,4),									
	(8,5),(9,6),(8,7). Use K-medoid algorithm and Manhattan distance measure to discover two									
	clusters by considering (4,5) and (8,5) as cluster medoids. Check whether the replacement of									
	(i) (4,5) by (3,7) (ii) (8,5) by (9,6) on the initial clusters formed is a good replacement or not									
1B.	Consider a following 2 X 2 contingency table summarizing observed count and the total									
	transactions with respect to type of drinks and snacks students of an Engineering college									
	preferred:									
	-		1				7			
	Drinks									
				Milk	Coffee	∑row				
				3000	1500	4500				
		Snacks	2	1000	1500	2500				
			∑col	4000	3000	7000				
	Use Chi Square test to check the dependency of Snacks and Drinks for degree of freedom n=1									
	and significance level 0.001 and Chi Square in the statistical table is 10.828.									
1C.	C. Distinguish between the Relational OLAP server and Multi-dimensional OLAP server.							2		
2A.			priori algorithm 1	_	•			5		
	Find all frequent itemsets of the following transaction database using Apriori algorithm with									
	respect to r	ninimum sup	port = 20% .			[4]				
		TID	Item Number	rs TID	T	Item Numbers				
		1	1,2,5,7	6		2,3,6	_			
		2	2,4	7		3,6				
		3	2,3,6,7	8		2,3,5				
	4 7 9 2,3,5									
	1	'	1 /	1 2		4,5	1	1 1		

		5	3,6	10	2,6,7				
2B.	Construct pattern count tree for the following database.								
	TId	Items Boug	ht TId	Items Bough	t				
	100	1, 2, 5	105	2,3,6					
	101	2,4,6	106	1,3,5,6					
	102	2,3,5	107	1,2,3,5					
	103	1,2,4,6	108	1,2,3					
	104	1,3,4,5		, ,					
2C.			-		me to find all account	numbers with	2		
	balance greater than 400 where account=(acc_no, balance, branch)								