ECE 3152 Linear Control Theory

MATHEMATICAL MODELS OF SYSTEMS

Electrical Network Transfer Functions
Table: VVoltage-current, voltage-charge, and impedance relationships for capacitors, resistors,

and inductors

Component | Voltage-current Current-voltage Voltage-charge Impedance
Z(s) = %)
I
1t L adv(d) 1 1
Capacitor v(t) = Efo i(Hdr | i®)=C T v(t) = EQ(t) Cs
' = Ri 1 dq(t
Resistor v(t) = Ri(t) i) = Ev(t) 2(6) = R Zi(t) R
Inductor di(t) 1t d?q(t) Ls
v(t) It i(t) Lfo v(Ddt | v(t) =L s

Note: The following set of symbols and units is used: v(t) - V (volts); i(t) — A (amps); q(t)
— Q (coulombs); C — F (farads), R — Q (ohms); L — h (henries)

Translational Mechanical System Transfer functions
Table 2.4: Force-velocity, force-displacement, and impedance translational relationships for
springs, viscous damper, and mass.

Component Force-velocity Force-displacement Impedance
Z (s) = F(s)
™ TXE)
t
f(©) =Kx(t)) K
Spring f) = Kf v(t)dt
0
Viscous damper t) = Bu(t dx(t B
p f@® = Bu(® ) = s 20 s
Mass _ o dv(t) d?x(t) Ms?
f®)=M It f)=M —

Note: The following set of symbols and units is used: f(t) - N (newtons); x(t) — m (meters);
v(t) — m/s (meters/second); K — N/m (newton/meter), B — N-s/m (newton-seconds/meter); M
—kg (kilograms=newton-second?/meter)

Rotational Mechanical System Transfer functions
Table 2.5: Torque-angular velocity, torque angular displacement, and impedance rotational
relationships for springs, viscous damper, and inertia.

Component Torque-angular velocity Torque-angular Impedance
displacement _T(s)
t T(t) = KO(t)) K
Spring T(t) = Kfo w(t)dt
' = de(t
Viscous damper T(t) = Bw(t) T = B di) Bs
Inertia _dw(t) d?6(t) Js?
T(t) _] dt T(t) :]F
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Note: The following set of symbols and units is used: T(t) — N-m (newton-meters); 6(t) — rad
(radians); w(t) — rad/s (radians/second); K — N-m/rad (newton-meter/second), B — N-m-s/rad
(newton-meter-second/radians); J — kg-m? (kilogram-meters®=newton-meter-second?/radian)

Transfer Functions for Systems with Gears
T, (t)- input torque
0, (t) — angle of rotation of input gear
r— radius of input gear
N1 — number of teeth on input gear
T, (t)- output torque
0, (t) — angle of rotation of output gear
r,— radius of output gear
N2 — number of teeth on output gear
0, 12 N>
b) T16, =T,0;
T 01 _ N
)5 =6 m
Note: Rotational mechanical impedances can be reflected through gear trains by multiplying
the mechanical impedance by the ratio

Number of teeth of gear on destination shaft]2

Number of teeth of gear on source shaft
TRANSIENT RESPONSE SPECIFICATIONS

Second order system
C(s) _ Wz
R(s) 52+ 2fw,s + w?

System is un-damped when & = 0

System is under damped when 0 < ¢ <1

System is critically damped when & = 1

System is over damped when & > 1
REDUCTION OF MULTIPLE SUBSYSTEMS

Cascade form

Rs) ——> Gi9) Gy(s) > Gs) [—=> C(5)

(a) Cascaded subsystem

R(s) ——> Gi(S)Gy(s)Gs(s) |—=> C(s)

(b) Equivalent transfer function
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Parallel form

> Ga(s)
R(s) > > Gy(s)
> Gs(s)

(a) Parallel subsystem

R(s) ——>£G;(S) £ Gx(S) £ Ga(s) |——= C(s)

(b) Equivalent transfer function

Feedback Form

E
BN T

R(s) C(s)
L H(s)

Feedback control system

G(s)
—> ——— —>
R(s) 1£G(s) H(s) C(s)

Equivalent transfer function

Moving blocks to create familiar forms

i) Moving a block to the left past a summing junction

C(s)
——>| G(S) ——=>(+)—>
———>(+)—>{ G(5) — R()
R(s) T C(s) T
X() G(s)
‘X(s)
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i) Moving a block to the right past a summing junction

C C(s)
N ey B —(H— 6 |—
R(s) T — R(s) T
Xe) L
G(s)
‘ X(s)

iii) Moving a block to the left past a pickoff point

C(s)
C(s) —{ Gs) >
R(s) > G(S) ——> —  R(S)
_ 1
- e [

iv) Moving a block to the right past a pickoff point

ce) C(s)
S > >
—>{ G(s) >  __ R(@) °¢)
R(s) S —

G(s) F—>

SIGNAL-FLOW GRAPHS
Mason’s rule

The transfer function % of a system represented by a signal-flow graph is
¢ _ 2k TieD
R(s) A

Where

k= number of forward paths

T,.= the k" forward-path gain

A =1->" loop gains + Y product of non-touching loop gains taken two at a time - > product of
non-touching loop gains taken three at a time + > product of non-touching loop gains taken
fouratatime................

Ax=A -Y loop gain terms in A that touch the ki forward path. Ak is formed by eliminating
from A those loop gains that touch the kw forward path.
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STABILITY

Routh-Hurwitz criterion

Considering the characteristic equation

aps™ + a; s+ a,s" T+ L ta,_ s+ a, =0

Form the determinants from the coefficients of the characteristic equation. There are n
determinants for n order system.

The system is stable if and only if the value of each determinant is greater than zero.

STEADY-STATE RESPONSE SPECIFICATIONS

Input Static error constants Steady state errors
Step function Kp = limG(s) 1
e 1+k,
Ramp function (t) K, =1limS G(s) 1
S$—0 k—v
Parabolic function (t2) K, = lim 52G(s) 1
ka

FREQUENCY RESPONSE SPECIFICATIONS
1 i _
a) Resonant peak M, = i ;&€ =0.707

b) Resonant frequency w, = w,/1 — 282 ;& < 0.707
c) Bandwidth

BW = wn\/(l — 282) + 484 — 482+ 2

1

Gain marginindB = 0 — gain in dB at w = w,
wy, is phase crossover frequency
e) Phase margin=180°+ phase at w = wy,

wy is gain crossover frequency

ROOT LOCUS TECHNIQUES
N(s)

a) Open-loop transfer function G(s)H(s) = K o)
b) Magnitude criterion |G(jw)H(jw)| = 1

c) Angle criterion £G(jw)H(jw) = £180°

d) For breakaway and break-in points solve Z—f =0

d) Gain margin =

Y open loop poles— Y open loop zeros

e) Centroid of asymptote o =

n-m
n=number of open loop poles; m=number of open loop zeros
f) Angle of intercept of asymptotes f = (%) 180%;1=0,1,2,......(n—m—1)

g) Angle of departure from the complex pole s = —a + jb
@ = 180° + Angle of {(s + a— jb)G(s)H(s)}ats = —a + jb
Angle of departure from the complex pole s = —a — jb
@ = 180° + Angle of {(s + a+ jb)G(s)H(s)}ats = —a — jb
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h) Angle of arrival at the complex zero s = —a + jb

_ o _ G(s)H(s) _ ,
@ = 180° — Angle of {(S+a_jb)} ats = —a+jb
Angle of arrival at the complex zero s = —a — jb

— o _ G(s)H(s) .
@ = 180° — Angle of {(S+a+jb)} ats = —a—jb

D(so)
N(so)
j) To find the jo axis crossing, use Routh Hurwitz criterion.

1) Value of K at the point s=s, on the root locus K = |

STATE-SPACE REPRESENTATION
a) State Equation: X = AX + Br
b) Output equation: y = CX + Dr
c) Eigen Values: Solve [AI —A| =0
d) Transfer function: T(s) = % =C[sI-A]"*B+D
e) State transition matrix: e4t = L™ [s] — A]™?!
f) Zero input response: Yyz(s) = C [sI — A]"1 X(0)
g) Zero state response: Yoz (s) = C [sI — A]"1 B R(s)

Gain margin = 20 log |71| ; where a is the magnitude of the function at ¢ = -180°.
Phase Margin = 2GH(jo1) +180% Where o1 is the gain cross over frequency.

s+1/T

Lag compensator G¢(s) = Kc sitar © © >1
Lead compensator G¢(s) =Kc :3{1 7; ; a<l
PID Controller G¢(s) = K, + % + Kys
Laplace Transforms
Time domain Laplace Domain
o(t) = unit Impulse 1
. 1
u(t) = unit step —
S
t=ramp L
= -
e s+a
—at l
e (s+a)?
1
Za-e
a s(s+a)
e—at _e—bt b_—a
(s+a)(s+b)
. b
sin(bt
( ) SZ +b2
cos(bt) >
s® +b?
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e *sin(bt) ¢

(s+a)*+b’
. s+a
e * cos(bt) (s+a)’ b’
Sinh(bt) < b b7
S
Cosh(bt) ERY
o(t—KkT) g kTS
2
t? =

Initial value Theorem

lim £(t) = lim sf(s)

t—0

Final value Theorem

lim £(t) = lim sf(s)

t—>o0

First differentiation f'(t)

sF(s) = £(0)

Second differential f"(t)

s?F(s) —sf(0) - f1(0)
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