ENGINEERING ECONOMICS AND FINANCIAL MANAGEMENT (HUM 3151)

Single Payment Series	Compound Amount, (F/P, i, n)	$F = P(1+i)^n$
	Present Worth, (P/F, i, n)	$P = F(1+i)^{-n}$
Equal Payment Series	Compound Amount, (F/A, i, n)	$F = A\left[\frac{\left(1+i\right)^n - 1}{i}\right]$
	Sinking Fund, (A/F, i, n)	$A = F\left[\frac{i}{\left(1+i\right)^n - 1}\right]$
	Present Worth, (P/A, i, n)	$P = A\left[\frac{\left(1+i\right)^n - 1}{i\left(1+i\right)^n}\right]$
	Capital Recovery, (A/P, i, n)	$A = P\left[\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right]$
Gradient Series	Conversion factor, (A/G, i, n)	$A = G\left[\frac{(1+i)^{n} - in - 1}{i(1+i)^{n} - i}\right]$

Discrete Compounding Formulas with Discrete Payments:

Nominal and Effective Interest Rates:

Effective interest rate per period	m = Number of compounding periods per year
$i = \frac{r}{m}$	r = Interest rate
Effective annual interest rate $i_{eff} = (1 + \frac{r}{m})^c - 1$	 m = Number of compounding periods per year c = Number of compounding period per payment period r = Interest rate
Capitalized Cost (CC)	A = Annual worth
$CC = \frac{A}{I}$	I = interest rate

	I = Purchase price of the machine
Capital Recovery (CR)	S = Salvage value of the machine at the end of
$(I - G) \times (A + i) + G + i$	machine life
$CR = (I - S) \times \left(\frac{P}{P}, l, n\right) + S * l$	n = Life of the machine in years, and
	i = Interest rate, compounded annually
Economic Life of an Asset	Capital Recovery expenses + EUAC of operating and maintenance expenses

Depreciation	
i. Straight Line Depreciation	D_n = Annual depreciation amount
Annual Depreciation = $D_n = \frac{Purchase \ Price - Salvage \ Value}{Years \ of \ useful \ life}$	I = Purchase price of the equipment
Book Value = $I - (n * D_n)$	n = Number of Years
ii. Decline Balance Method (DBM) Depreciation	α = Annual rate of Depreciation (%)
The depreciation rate (α) is given by	$B_n = Book$ value of the equipment
$(B_n)^{\frac{1}{n}}$	I = Purchase price of the equipment
$\alpha = 1 - \left(\frac{-n}{I}\right)$	n = Number of Years
The depreciation charge for any year 'n' is given by,	$D_n = Depreciation charge for any year$
$D_n = \alpha I (1 - \alpha)^{n-1}.$	"n".
The book value is given by,	
$B_n = I(1 - \alpha)^n.$	
<i>iii.</i> Double Decline Balance Depreciation	α = Annual rate of Depreciation (%)
Annual rate of depreciation is, $\propto = 2$ / years of useful life or $\propto = \frac{2}{n}$	n = Number of Years

Ratio Analysis Types of Financial Ratios *I. Liquidity Ratios*

Current Ratio

Current Ratio= Current assets/current liabilities

Acid test ratio (quick ratio)

Acid test ratio (quick ratio) = (current assets - inventories)/ liabilities

II. <u>Financial Leverage Ratio</u>

Structural Ratio

Debt to equity ratios

Debt to equity ratios = total debt or long term debt/shareholder's equity

Debt to total asset

Debt to total asset = total debt/ total asset

Coverage ratio

Interest coverage ratio

Interest coverage ratio = Earnings before Interest & Taxes/ Interest Expense

III. <u>Turnover Ratios</u>

1. Inventory turnover

Inventory turnover = Cost of goods sold /Average inventory

Costs of goods sold = Opening stock + Manufacturing cost including purchases -

Closing stock

Or cost of goods sold= (100- %gross profit) sales

Avg. Inventory = Avg. of monthly inventory for calendar year considered

= (opening stock + closing stock)/2

In the absence of data, inventory turnover = Sales/ Closing Inventory

2. Debtor's turnover ratio

Debtors turnover = Net Credit sales/ (Avg. accounts receivable (or avg. debtors)

Average debtors= (opening balance debtors + closing balance debtors)/ 2

Closing balance= Current assets - Inventories - Cash

In the absence of data, Debtors turnover = Total sales/ (debtors + bills receivable)

Average collection period

Another method of measuring liquidity of firm's debtors is average collection period.

Avg. accounts receivable/avg. daily credit sales

OR (Avg. debtor's /credit sales) x 360 days

SIMILARLY, THERE IS CREDITORS TURNOVER RATIO

3. Asset Turnover

Fixed Asset Turnover = costs of goods sold/ avg. fixed assets

Total Asset Turnover = costs of goods sold/ avg. total assets

IV. <u>Profitability Ratios</u>

Profit margin ratio

Indication of relationship between profits and sales.

Two types,

- 1. Gross profit margin = (gross profit /sales) x100
- 2. Net profit margin
 - a. Net profit margin (before tax) = (EBIT /Sales)
 - b. Net profit margin (after tax) = EAT/ Sales

Return on Investment

Profits of firm to its investment

Return on Assets

- Return on Assets = Net profit after tax/Avg. total assets
- = (EAT + Interest Tax Advantage on Interest)/ Assets

Return on equity

Return on equity = Net profit after tax/ avg. total shareholders' equity