

DEPARTMENT OF MECHATRONICS V SEMESTER B.TECH. (MECHATRONICS)

END SEMESTER EXAMINATIONS, DECEMBER 2021

SUBJECT: DIGITAL SIGNAL PROCESSING [MTE 3151] – PART A

(23/12/2021)

Time: 50 minutes

MAX. MARKS: 30

	Instructions to Candidates:
*	Answer ALL the questions.
*	Data not provided, may be suitably assumed

Q.		Μ	CO	PO	LO	BL
No						
1	The input $x(t)$ and the output $y(t)$ of a continuous-time system are related as	1	1	2	2	3
	$y(t) = \int_{t-T}^t x(u) du .$					
	 The given system is a) Linear and stable b) Non-linear and stable c) Linear and unstable d) Non linear and unstable 					
2	The input $x(t)$ and the output $y(t)$ of a continuous-time system are related as $y(t) = \int_{t-T}^{t} x(u) du$. The given system is a) Time invariant and memory b) Time variant and memoryless c) Time invariant and memoryless d) Time variant and memory	1	1	2	2	3
3.	Consider 2 real sequences $x_1[n] = \{1230\}, x_2[n] = \{1321\}$. Let $X_1(K)$ and $X_2(K)$ be 4-point DFTs of $x_1[n]$ and $x_2[n]$ respectively. Another sequence $x_3[n]$ is derived by taking 4-point inverse DFT of $X_3(K) = X_1(K) X_2(K)$. The value of $x_3[2]$ isa) 5b)14c)11 d)12	1	2	3	3	5

			_			_
4	If $H(s) = 1/(s^2+s+1)$ represent the transfer function of a low pass filter with a pass	1	3	3	3	5
	band of 1 rad/sec, then what is the system function of a low pass filter with a pass					
	band 10 rad/sec?					
	100					
	a) $\frac{100}{s^2 + 10s + 100}$					
	s ²					
	b) $\frac{s^2}{s^2+s+1}$					
	~ ²					
	c) $\frac{s}{s^2 + 10s + 100}$					
	d) None of the mentioned					
		1	2	2	2	
5.	What is the one sided z-transform of $x(n)=\delta(n+k)$?	1	2	2	2	4
	a) z^{-k} b)0 c) z^k d)1					
6.	Pole –zero plot of a filter $H(z)$ is given in fig1. Identify the filter.	1	2	2	2	4
	Im(z)					
	$- \left(\begin{array}{c} \times \\ \end{array} \right) $					
	1/3 ³ Re(z)					
	a)Low pass filter b)High pass filter c)Band pass filter					
	d)Band stop filter e)All pass filter					
7.	Three FIR LPF's are cascaded. The 3 dB cutoff frequency value is	1	3	2	2	5
	a) 0.3 b) $\frac{\pi}{2}$ c) 0.94 d)None of the above					
	a) 0.3 b) $\frac{\pi}{2}$ c) 0.94 d)None of the above					
8	If $x_1(n)$, $x_2(n)$ and $x_3(n)$ are three sequences each of length N whose DFTs are	1	2	2	2	4
	given as $X_1(K)$, X_2 (K) and $X_3(K)$ respectively and $X_3(K) = X_1(K) X_2$ (K), then	-	_	_	_	
	the expression for $x_3(n)$ is					
	Σ^{N-1} (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)					
	a) $\sum_{n=0}^{N-1} x_1(n) x_2(m+n)$ c) $\sum_{n=0}^{N-1} x_1(n) x_2(m-n)$,					
	b) $\sum_{n=0}^{N-1} x_1(n) x_2((m-n))_N$, d) $\sum_{n=0}^{N-1} x_1(n) x_2((m+n))_N$					
	$ = \int \Delta n = \int$					

MA MA

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

9.	A Digital Filter is defined by the difference equation: $2 y[n] = 0.99 x[n-1] + x[n]$, how would you classify this filter? a) FIR-LPF b) FIR-HPF c) FIR-BPF d) None of these, FIR-BSF	1	3	2	2	4
10.	The first five points of the 8-point DFT of a real valued sequence are 5, 1-j3, 0, 3-j4, 0. The last two points of the DFT are respectively	1	2	2	2	5
	a) $0, 1-j3$ b) $0, 1+j3$ c) $1+j3, 5$ d) $1-j3, 5$					
11.	$\begin{array}{c} \hline x^{(n)} \hline \downarrow $	1	3	2	2	4
	c) IIR filter					
12.	d) High pass filter For an 2 nd order IIR BPF with transfer function $H(z) = \frac{(1-z^{-2})}{1-\beta(1+\alpha)z^{-1}+\alpha z^{-2}}\frac{1-\alpha}{2}$ identify the correct statement	1	3	2	2	4
	 a) Different β value gives different center frequency b) Different α value gives different center frequency c) Different bandwidth for single α value d) None of the above 					
13.	For an N-point FFT algorithm with N=2 ^m , which one of the following statements is TRUE? a) The number of butterfiles in the m th stage is N/m	1	2	1	1	5

				I	I	
	b) In-place computation requires storage of only 2N node data					
	c) Computation of a butterfly requires only one complex multiplication					
	d) Symmetric property of twiddle factor is not responsible for decrease in computation time.					
	computation time.					
14.	The N-point DFT of the sequence $x[n] = \delta(n - n_0)$ where $0 < n_0 < N$ is	1	2	1	1	4
	a) 1 b) $W_N^{n_0k}$ c) $W_N^{-n_0k}$ d) 0					
15.	Advantage of IIR filter is	1	3	1	1	5
15.	a) No statbility issues	1	5	1	1	5
	b) Simpler design compared to FIR filter					
	c) Less computation time to achieve better roll off/3dB decay					
	d) All of the above					
16.	Assume that a complex multiplication takes 2 ns and that the amount of time to	1	2	2	2	5
	compute a DFT is determined by the amount of time it takes to perform all					
	complex multiplications. The time required to compute 100 point DFT using					
	Radix -2 FFT algorithm is					
	a) 100 b) 200 c) 332.19 d) 664.38					
	a) 100 b) 200 c) 552.19 d) 004.56					
17.	Pole – zero plot is shown in Fig 17. Identify the FIR filter given.	1	3	2	2	4
17.	Imaginary	1	5	-	-	
	2 Poles					
	Real					
	+					
	Fig 17					
	a)Low pass filter b)High pass filter c)Band pass filter					
	d)Band stop filter e)All pass filter					
18.	Identify the number of adders required to realize a 256 point radix 2 FFT using	1	2	2	2	5
	DIT algorithm. a) 2048					
	a) 2048 b) 1024					
	c) 616					
	d) 65536					
19.	For the DFT pair shown, using properties compute values of x_0 and X_1 quantities,	1	2	2	2	5

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

	$x[n] \leftrightarrow X[K]$					
	$\{x_0, 2, 3, -4\} \leftrightarrow \{2, X_1, 6, -2.0000 + 6.0000i\}.$					
20.	The impulse response h(t) of a LTI system is described by h(t)= $e^{(\alpha t)}u(t) + e^{(\beta t)}u(-t)$ Where u(t)denotes the unit step function, and α and β are real constants. This system is stable if a) α is positive and β is positive b) α is negative and β is positive c) α is positive and β is negative d) α is negative and β is negative	1	1	2	2	5
21.	amount of information is present in zero padded signal compared to	1	1	2	2	4
	a) Same b) More c) Less d) Double		-			
22.	Consider a real sequence $x[n] = \{2 \ 4 \ 6 \ 2\}$. The value of $y[1]$ if $Y(k)=X(k-2)_4$ is a) -4 b) 4 c) -6 d) 6	1	2	2	2	5
23.	Consider the filter $y[n]=0.9y[n-1]+bx[n]$ The value of b so that $ H(0) =1$ is a) ± 0.1 b) ± 1 c) 0 d) ± 0.5	1	3	2	2	5
24.	Consider the filter $y[n]=0.9y[n-1]+bx[n]$. The frequency at which $ H(\omega) =\frac{1}{\sqrt{2}}$ is a) 0.105 b) 0.5 c) 1.414 d) 1	1	3	2	2	5
25.	Consider the filter $y[n]=0.9y[n-1]+bx[n]$, so that $ H(0) =1$ Identify the type of filter a) Low pass filter b) High pass filter	1	3	2	2	4

26. Damb pass stop filter1322426. Consider the filter $y[n]=-0.9y[n-1]+bx[n]$, so that $ H(0) =1$. Identify the type of this filter. a) Low pass filter b) High pass filter c) Band pass stop filter1322427. The four phases of the 'C5x pipeline structure are sequenced as a) Fetch(F), Decode (D), Read (R), Execute (E) b) Read (R), Fetch(F), Decode (D), Execute (E) c) Fetch(F), Read (R), Decode (D), Execute (E) d) Read (R), Decode (D), Fetcut(F), Execute (E)1411428. In a non pipeline processor, the instruction fetch, decode and execute take 35 ns, and 40 ns, respectively. Determine the increase in throughput if the instruction steps were pipelined. Assume a 5 ns pipeline overhead at each stage, and ignore other delays. a) 2.67 b) 2.76 c) 2.87 d) 2.961411429The 7-bit data memory address (dma) is concatenated with the 9 bits of the data memory page pointer (DP) in status register 0 to form the full 16-bit data memory page pointer (DP) in status register 0 to form the full 16-bit data memory page pointer (DP) in status register 0 to form the full 16-bit data memory addressing Mode c) Dedicated-register addressing Mode d) Inmediate addressing Mode11122530. $\int_0^{\infty} cost u(t-3) \delta(t) dt = \underline{\qquad}$ 111225a) 0 b) 1 c) -1 d) ∞ 025111225		c) Band pass filter					
26.Consider the filter $y[n]=-0.9y[n-1]+bx[n]$, so that $ H(0) =1$. Identify the type of this filter. a) Low pass filter b) High pass filter c) Band pass filter d) Bans stop filter1322427.The four phases of the 'C5x pipeline structure are sequenced as a) Fetch(F), Decode (D), Read (R), Execute (E) b) Read (R), Fetch(F), Decode (D), Execute (E) c) Fetch(F), Read (R), Decode (D), Execute (E) c) Fetch(F), Read (R), Decode (D), Execute (E) d) Read (R), Decode (D), Fetch(F), Execute (E)1411428.In a on pipeline processor, the instruction fetch, decode and execute take 35 ns, 25 ns, and 40 ns, respectively. Determine the increase in throughput if the instruction steps were pipelined. Assume a 5 ns pipeline overhead at each stage, a) 2.67 b) 2.76 c) 2.87 d) 2.961411429The 7-bit data memory address (dma) is concatenated with the 9 bits of the data memory address in a) Direct Addressing Mode c) Dedicated-register addressing Mode c) Dedicated-register addressing Mode d) Indirect addressing Mode111122530. $\int_0^\infty \cos t u(t-3) \delta(t) dt =$							
Identify the type of this filter.a) Low pass filterb) High pass filtera) Low pass filterb) High pass filterc) Band pass filterd) Bans stop filterd) Bans stop filter27. The four phases of the 'C5x pipeline structure are sequenced as a) Fetch(F), Decode (D), Read (R), Execute (E) b) Read (R), Fetch(F), Decode (D), Execute (E) c) Fetch(F), Read (R), Decode (D), Execute (E)1411428. In a non pipeline processor, the instruction fetch, decode and execute take 35 ns, 25 ns, and 40 ns, respectively. Determine the increase in throughput if the instruction steps were pipelined. Assume a 5 ns pipeline overhead at each stage, and ignore other delays. a) 2.67 b) 2.76 c) 2.87 d) 2.961411429 <the (dma)="" 7-bit="" 9="" address="" bits="" concatenated="" data="" data<br="" is="" memory="" of="" the="" with=""></the> memory page pointer (DP) in status register 0 to form the full 16-bit data memory address in a) Direct Addressing Mode b) Indirect addressing Mode11411430. $\int_0^{\infty} cost u(t-3) \delta(t) dt =$		d) Dails stop inter					
a) Low pass filter b) High pass filter c) Band pass filter d) Bans stop filtera)Low pass filter c) Band pass filter d) Bans stop filter27. The four phases of the 'C5x pipeline structure are sequenced as a) Fetch(F), Decode (D), Read (R), Execute (E) b) Read (R), Fetch(F), Decode (D), Execute (E) c) Fetch(F), Read (R), Decode (D), Execute (E) d) Read (R), Decode (D), Execute (E) d) Read (R), Decode (D), Execute (E)1411428. In a non pipeline processor, the instruction fetch, decode and execute take 35 ns, 25 ns, and 40 ns, respectively. Determine the increase in throughput if the instruction steps were pipelined. Assume a 5 ns pipeline overhead at each stage, and ignore other delays. a) 2.67 b) 2.76 c) 2.87 d) 2.961411429The 7-bit data memory address (dma) is concatenated with the 9 bits of the data memory page pointer (DP) in status register 0 to form the full 16-bit data memory address in a) Direct Addressing Mode b) Indirect addressing Mode c) Dedicated-register addressing Mode d) Immediate addressing Mode11122530. $\int_0^{\infty} cost u(t-3) \delta(t) dt =11225a) 0b) 1c) -1-11225$	26.	Consider the filter $y[n] = -0.9y[n-1] + bx[n]$, so that $ H(0) = 1$.	1	3	2	2	4
b) High pass filter c) Band pass filter d) Bans stop filtera) Fetch(F), Decode (D), Read (R), Execute (E) b) Read (R), Decode (D), Read (R), Execute (E) c) Fetch(F), Decode (D), Execute (E) d) Read (R), Decode (D), Execute (E) d) Read (R), Decode (D), Fetch(F), Execute (E)1411428. In a non pipeline processor, the instruction fetch, decode and execute take 35 ns, 25 ns, and 40 ns, respectively. Determine the increase in throughput if the instruction steps were pipelined. Assume a 5 ns pipeline overhead at each stage, and ignore other delays. a) 2.67 b) 2.76 c) 2.87 d) 2.961411429The 7-bit data memory address (dma) is concatenated with the 9 bits of the data memory page pointer (DP) in status register 0 to form the full 16-bit data memory address in a) Direct Addressing Mode c) Dedicated-register addressing Mode d) Inmediate addressing Mode11122530. $\int_0^{\infty} \cos t u(t-3) \delta(t) dt =$		Identify the type of this filter.					
c) Band pass filter d) Bans stop filterc) Band pass filterc) Band pass filter27. The four phases of the 'C5x pipeline structure are sequenced as a) Fetch(F), Decode (D), Read (R), Execute (E) b) Read (R), Fetch(F), Decode (D), Execute (E) c) Fetch(F), Read (R), Decode (D), Execute (E) d) Read (R), Decode (D), Execute (E)1411428. In a non pipeline processor, the instruction fetch, decode and execute take 35 ns, 25 ns, and 40 ns, respectively. Determine the increase in throughput if the instruction steps were pipelined. Assume a 5 ns pipeline overhead at each stage, a) 2.67 b) 2.76 c) 2.871422529The 7-bit data memory address (dma) is concatenated with the 9 bits of the data memory page pointer (DP) in status register 0 to form the full 16-bit data memory address ina) Direct Addressing Mode b) Indirect addressing Mode1111422530. $\int_0^{\infty} \cos t u(t-3) \delta(t) dt =11225a) 0b) 1c) -1c) -111225$		a) Low pass filter					
d) Bans stop filterIII27.The four phases of the 'C5x pipeline structure are sequenced as a) Fetch(F), Decode (D), Read (R), Execute (E) b) Read (R), Fetch(F), Decode (D), Execute (E) c) Fetch(F), Read (R), Decode (D), Execute (E) d) Read (R), Decode (D), Execute (E)1411428.In a non pipeline processor, the instruction fetch, decode and execute take 35 ns, and 40 ns, respectively. Determine the increase in throughput if the instruction steps were pipelined. Assume a 5 ns pipeline overhead at each stage, and ignore other delays. a) 2.67 b) 2.76 c) 2.87 d) 2.961422529The 7-bit data memory address (dma) is concatenated with the 9 bits of the data memory gade pointer (DP) in status register 0 to form the full 16-bit data memory address in a) Direct Addressing Mode c) Dedicated-register addressing Mode11122530. $\int_0^{\infty} \cos t u(t-3) \delta(t) dt =a) 0b) 1c) -111225$		b) High pass filter					
d) Bans stop filterIII27.The four phases of the 'C5x pipeline structure are sequenced as a) Fetch(F), Decode (D), Read (R), Execute (E) b) Read (R), Fetch(F), Decode (D), Execute (E) c) Fetch(F), Read (R), Decode (D), Execute (E) d) Read (R), Decode (D), Execute (E)1411428.In a non pipeline processor, the instruction fetch, decode and execute take 35 ns, and 40 ns, respectively. Determine the increase in throughput if the instruction steps were pipelined. Assume a 5 ns pipeline overhead at each stage, and ignore other delays. a) 2.67 b) 2.76 c) 2.87 d) 2.961422529The 7-bit data memory address (dma) is concatenated with the 9 bits of the data memory gade pointer (DP) in status register 0 to form the full 16-bit data memory address in a) Direct Addressing Mode c) Dedicated-register addressing Mode11122530. $\int_0^{\infty} \cos t u(t-3) \delta(t) dt =a) 0b) 1c) -111225$		c) Band pass filter					
a) Fetch(F), Decode (D), Read (R), Execute (E) b) Read (R), Fetch(F), Decode (D), Execute (E) c) Fetch(F), Read (R), Decode (D), Execute (E)28. In a non pipeline processor, the instruction fetch, decode and execute take 35 ns, and 40 ns, respectively. Determine the increase in throughput if the instruction steps were pipelined. Assume a 5 ns pipeline overhead at each stage, and ignore other delays. a) 2.67 b) 2.76 c) 2.87 d) 2.961422529The 7-bit data memory address (dma) is concatenated with the 9 bits of the data memory page pointer (DP) in status register 0 to form the full 16-bit data memory address in a) Direct Addressing Mode c) Dedicated-register addressing Mode1111430. $\int_0^{\infty} cost u(t-3) \delta(t) dt =11225a) 0b) 1c) -111225$		d) Bans stop filter					
a) Fetch(F), Decode (D), Read (R), Execute (E) b) Read (R), Fetch(F), Decode (D), Execute (E) c) Fetch(F), Read (R), Decode (D), Execute (E)28. In a non pipeline processor, the instruction fetch, decode and execute take 35 ns, and 40 ns, respectively. Determine the increase in throughput if the instruction steps were pipelined. Assume a 5 ns pipeline overhead at each stage, and ignore other delays. a) 2.67 b) 2.76 c) 2.87 d) 2.961422529The 7-bit data memory address (dma) is concatenated with the 9 bits of the data memory page pointer (DP) in status register 0 to form the full 16-bit data memory address in a) Direct Addressing Mode c) Dedicated-register addressing Mode1111430. $\int_0^{\infty} cost u(t-3) \delta(t) dt =11225a) 0b) 1c) -111225$	27	The four phases of the 'C5x pipeline structure are sequenced as	1	4	1	1	4
b) Read (R), Fetch(F), Decode (D), Execute (E) c) Fetch(F), Read (R), Decode (D), Execute (E) d) Read (R), Decode (D), Execute (E) 28. In a non pipeline processor, the instruction fetch, decode and execute take 35 ns, 25 ns, and 40 ns, respectively. Determine the increase in throughput if the instruction steps were pipelined. Assume a 5 ns pipeline overhead at each stage, and ignore other delays. a) 2.67 b) 2.76 c) 2.87 d) 2.96 29 The 7-bit data memory address (dma) is concatenated with the 9 bits of the data memory page pointer (DP) in status register 0 to form the full 16-bit data memory address in a) Direct Addressing Mode b) Indirect addressing Mode c) Dedicated-register addressing Mode d) Immediate addressing Mode d) Intervention (1 - 3) $\delta(t) dt = $ a) 0 b) 1 c) -1	_ / ·		-		-	-	-
c) Fetch(F), Read (R), Decode (D), Execute (E) d) Read (R), Decode (D), Fetch(F), Execute (E)1422528. In a non pipeline processor, the instruction fetch, decode and execute take 35 ns, 25 ns, and 40 ns, respectively. Determine the increase in throughput if the instruction steps were pipelined. Assume a 5 ns pipeline overhead at each stage, and ignore other delays. a) 2.67 b) 2.76 c) 2.87 d) 2.961422529The 7-bit data memory address (dma) is concatenated with the 9 bits of the data memory page pointer (DP) in status register 0 to form the full 16-bit data memory address in a) Direct Addressing Mode b) Indirect addressing Mode c) Dedicated-register addressing Mode1111430. $\int_0^{\infty} \cos t u(t-3) \delta(t) dt =11225a) 0b) 1c) -11225$							
d) Read (R), Decode (D), Fetch(F), Execute (E)Image: Construction of the second construction of the sec							
28.In a non pipeline processor, the instruction fetch, decode and execute take 35 ns, 25 ns, and 40 ns, respectively. Determine the increase in throughput if the instruction steps were pipelined. Assume a 5 ns pipeline overhead at each stage, and ignore other delays. a) 2.67 b) 2.76 c) 2.87 d) 2.961422529The 7-bit data memory address (dma) is concatenated with the 9 bits of the data memory page pointer (DP) in status register 0 to form the full 16-bit data memory address in a) Direct Addressing Mode c) Dedicated-register addressing Mode d) Immediate addressing Mode11122530. $\int_0^\infty \cos t u(t-3) \delta(t) dt =$ 11225a) 0 b) 1 c) -11225							
$\begin{array}{ c c c c c c c c } \hline 25 \text{ ns, and } 40 \text{ ns, respectively. Determine the increase in throughput if the instruction steps were pipelined. Assume a 5 ns pipeline overhead at each stage, and ignore other delays. a) 2.67 b) 2.76 c) 2.87 d) 2.96 \begin{array}{ c c c c c c c c c c c c c c c c c c c$	28.		1	4	2	2	5
instruction steps were pipelined. Assume a 5 ns pipeline overhead at each stage, and ignore other delays. a) 2.67 b) 2.76 c) 2.87 d) 2.96a) 2.67 b) 2.76 c) 2.87 d) 2.96a) and a box of the data memory page pointer (DP) in status register 0 to form the full 16-bit data memory address ina) Direct Addressing Mode b) Indirect addressing Mode d) Immediate addressing Mode1411430. $\int_0^\infty \cos t u(t-3) \delta(t) dt =11225a) 0b) 1c) -1b) 1c) -1c) -1c) -1c) contact and c$	-01	•••••	-		_	_	C
and ignore other delays. a) 2.67 b) 2.76 c) 2.87 d) 2.96 29 The 7-bit data memory address (dma) is concatenated with the 9 bits of the data memory page pointer (DP) in status register 0 to form the full 16-bit data memory address in a) Direct Addressing Mode b) Indirect addressing Mode c) Dedicated-register addressing Mode d) Immediate addressing Mode d) Immediate addressing Mode d) Immediate addressing Mode a) 0 b) 1 c) -1 a) 0 b) 1 c) -1 b) 1 c) -1 c) -1 c							
a) 2.67 b) 2.76 c) 2.87 d) 2.96a) 1411429The 7-bit data memory address (dma) is concatenated with the 9 bits of the data memory page pointer (DP) in status register 0 to form the full 16-bit data memory address in a) Direct Addressing Mode b) Indirect addressing Mode c) Dedicated-register addressing Mode d) Immediate addressing Mode1411430. $\int_0^\infty cost u(t-3) \delta(t) dt =$ 11225a) 0 b) 1 c) -1-1-1-1-1-1							
b) 2.76 c) 2.87 d) 2.96 29 The 7-bit data memory address (dma) is concatenated with the 9 bits of the data memory page pointer (DP) in status register 0 to form the full 16-bit data memory address in a) Direct Addressing Mode b) Indirect addressing Mode c) Dedicated-register addressing Mode d) Immediate addressing Mode 30. $\int_{0}^{\infty} \cos t u(t-3) \delta(t) dt = \$ a) 0 b) 1 c) -1 b) 1 b)							
d) 2.96Image: constraint of the systemImage: constr							
29The 7-bit data memory address (dma) is concatenated with the 9 bits of the data memory page pointer (DP) in status register 0 to form the full 16-bit data14114a)Direct Addressing Mode b)Indirect addressing Mode c)a)Dedicated-register addressing Mode d)112230. $\int_0^\infty cost u(t-3) \delta(t) dt =$ 11225a)0 b)1 c)-11122		c) 2.87					
$\begin{array}{ c c c c c c } \hline memory page pointer (DP) in status register 0 to form the full 16-bit data \\ memory address in a) Direct Addressing Mode \\ b) Indirect addressing Mode \\ c) Dedicated-register addressing Mode \\ d) Immediate addressing Mode \\ \hline 30. \int_0^\infty cost u(t-3) \delta(t) dt = \ a) 0 \\ b) 1 \\ c) -1 \end{array} \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$		d) 2.96					
memory page pointer (DP) in status register 0 to form the full 16-bit data memory address in a) Direct Addressing Mode b) Indirect addressing Mode c) Dedicated-register addressing ModeImmediate addressing Mode30. $\int_0^\infty cost u(t-3) \delta(t) dt =$ Immediate addressing Mode30. $\int_0^\infty cost u(t-3) \delta(t) dt =$ Immediate addressing ModeImmediate addressing ModeImmediat	29	The 7-bit data memory address (dma) is concatenated with the 9 bits of the data	1	4	1	1	4
memory address ina) Direct Addressing Modeb) Indirect addressing Modeb) Indirect addressing Modec) Dedicated-register addressing Moded) Immediate addressing Moded) Immediate addressing Mode30. $\int_0^\infty cost u(t-3) \delta(t) dt =1122a) 0b) 1c) -1d) Immediated) Immediate$							
a) Direct Addressing Mode b) Indirect addressing Mode c) Dedicated-register addressing Mode d) Immediate addressing Mode1122530. $\int_0^{\infty} cost u(t-3) \delta(t) dt = $ 11225a) 0 b) 1 c) -111225							
c) Dedicated-register addressing ModeIIId) Immediate addressing Mode112230. $\int_0^\infty \cos t u(t-3) \delta(t) dt = $ 1122a) 0b) 1I122b) 1IIIIIc) -1IIIII		•					
c) Dedicated-register addressing ModeIIId) Immediate addressing Mode112230. $\int_0^\infty \cos t u(t-3) \delta(t) dt = $ 1122a) 0b) 1I122b) 1IIIIIc) -1IIIII							
d) Immediate addressing Mode I <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
30. $\int_{0}^{\infty} \cos t u(t-3) \delta(t) dt = $ 1 1 2 2 5 a) 0 1 1 2 2 5 b) 1 -1 1 1 2 2 5		d) Immediate addressing Mode					
a) 0 b) 1 c) -1	30.	$\int_0^\infty \cos t u(t-3) \delta(t) dt = \underline{\qquad}$	1	1	2	2	5
b) 1 c) -1							
c) -1		a) 0					
		b) 1					
d) ∞		c) -1					
		d) ∞					

DEPARTMENT OF MECHATRONICS V SEMESTER B.TECH. (MECHATRONICS)

END SEMESTER EXAMINATIONS, DECEMBER 2021

SUBJECT: DIGITAL SIGNAL PROCESSING [MTE 3151] – PART B

(23/12/2021)

Time: 75+10 minutes

MAX. MARKS: 20

	Instructions to Candidates:
*	Answer ALL the questions.
*	Data not provided, may be suitably assumed

Q. No		Μ	СО	РО	LO	BL
1a.	In a concert recording, it was found that a spurious signal of frequency 2.2 kHz was getting interfered with the recorded music. Design a filter to remove the unwanted signals in the frequency range 2kHz to 2.4kHz with a sampling rate of 8kHz and filter length=5, using Hamming window.	5	3	3	5	6
1b.	Condition monitoring (CM) is a significant requirement for ensuring safe and reliable working of machining processes and rotary components. You are appointed along with a safety officer in an industry to study the conditions of the system components shown in Fig. Q1b. and to develop and automated system for its condition monitoring, fault diagnostics and prognostics. Formulate the major steps required to implement a DSP based CM system for the same. Discuss on the challenges to be tackled in the entire process.	3	4	4	6	4

		•				•
1c.	Hearing aid can be tuned to filter out or amplify either high or low frequency	2	3	6	5	6
	sounds, depending on the frequency range in which the user has suffered					
	hearing loss. Design a Chebyshev filter to satisfy the specifications shown in					
	Fig. Q1c.					
	mag,dB					
	0					
	-1					
	-40					
	1kHz 5kHz f,Hz					
	Fig. Q1c.					
2a.	For sharpening a blurry image, the edges of the image need to be separated and	5	3	6	5	6
2a.	then boosted. Edges are the high frequency intensity variations in an image.	5	5	U	5	U
	Towards this edge detection task, design a digital filter with following					
	specification.					
	• Stopband edge = 6 kHz					
	• Passband edge = 4 kHz					
	• Passband attenuation $\geq 40 \ dB$					
	• Stopband attenuation $\leq 1 dB$					
	• Sampling frequency =24 kHz					
	The filter is to be designed by performing bilinear transformation on the analog					
	system function.					
2b.	In any digital signal processors (DSP's) the speed of the multipliers plays a	3	3	4	6	6
-~*	very important role. The precision of the multipliers also plays very important	•	•	-	Ū	Ŭ
	role along with its speed. According to methods used in vedic mathematics, the					
	various steps involved for fast computation of the multiplication of two 4-bit					
	numbers is as in Fig. Q2b.					
	STEP 1 STEP 2 STEP 3					
	a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0					
	b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0					
	STEP 4 STEP 5 STEP 6					
	STEP 4 STEP 5 STEP 6 a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0					
	b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0					
	STEP 7					
	a3 a2 a1 a0					
	1					
	b3 b2 b1 b0					
		1				1
	Fig. Q2b					

	Propose the major components and explain the steps included in modelling such multiplier architecture.				
2c.	Determine the magnitude of a low pass Chebyshev-1 filter of order 4 and 5 respectively at Ω =0. Demonstrate the response of these filters with the help of magnitude vs frequency plot. The ripple factor, ϵ is given as 0.8 <i>Hint:</i> $ H_a(j\Omega) = \frac{1}{\left[1 + \epsilon^2 C_N^2 \left(\frac{\Omega}{\Omega_p}\right)\right]^{1/2}}$	3	2	2	4

Chebyshev Filter Design equations

$$N \text{ is odd:} \quad H_a(s) = \frac{\Omega_p^N C_0 \prod_{k=1}^{\left(\frac{N-1}{2}\right)} C_k}{\left(s + \Omega_p C_0\right) \prod_{k=1}^{\left(\frac{N-1}{2}\right)} \left(s^2 + b_k \Omega_p s + C_k \Omega_p^2\right)}$$
$$N \text{ is Even:} \quad H_a(s) = \frac{\Omega_p^N C_0 \prod_{k=1}^{\left(\frac{N}{2}\right)} C_k \cdot \frac{1}{\sqrt{1 + \epsilon^2}}}{\prod_{k=1}^{\left(\frac{N}{2}\right)} \left(s^2 + b_k \Omega_p s + C_k \Omega_p^2\right)}$$

Where, $C_0 = y_N$

$$C_{k} = y_{N}^{2} + \cos^{2} \frac{(2k-1)\pi}{2N}$$
$$b_{k} = 2y_{N} \sin \frac{(2k-1)\pi}{2N}$$
$$Y_{N} = \frac{1}{2} \left\{ \left[\sqrt{1 + \frac{1}{\epsilon^{2}}} + \frac{1}{\epsilon} \right]^{1/N} - \left[\sqrt{1 + \frac{1}{\epsilon^{2}}} + \frac{1}{\epsilon} \right]^{-1/N} \right\}$$

$$\epsilon = \sqrt{\frac{1}{\delta_p^2} - 1}; \qquad \qquad N_c \ge \frac{\cosh^{-1}\sqrt{\frac{\delta_s^{-2} - 1}{\delta_p^{-2} - 1}}}{\cosh^{-1}\left(\frac{\alpha_s}{\alpha_p}\right)} ; \qquad \qquad \frac{1}{1 + \epsilon^2 C_N^2\left(\frac{\alpha_s}{\alpha_p}\right)} \le \delta_s^2$$