Reg. No.	WA MIE				9	
	77 6		~	-		

VII SEMESTER B.TECH. (PROGRAMME ELECTIVE)

END SEMESTER EXAMINATIONS, DEC-JAN 2020-21

SUBJECT: ANALYTICAL TECHNIQUES AND INSTRUMENTATION [CHM 4001]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- Answer ALL the questions.
- Missing data may be suitably assumed.
- Draw diagrams and write equations wherever necessary...
- 1A. Give reasons for the followings:
 - i) Conductometric titrations provide unsatisfactory results for precipitation titrations.
 - ii) Measured conductance values decreases till the equivalence point and then remains constant in the titration of strong acid against weak base.
- **1B.** Define the term column resolution. Discuss the effect of following factors on the resolution of chromatographic column.
 - i) Length of the column
 - ii) Band broadening
- 1C. What are the two different phases of high performance liquid chromatography? Describe the instrumentation and working of HPLC.

[2+3+5]

- **2A.** Name the indicator electrode used in the redox titrations in potentiometric methods. Explain the variation of pH in the neutralization titrations.
- **2B.** Explain, the procedure for the sample application, development and evaluation of chromatogram in thin layer chromatography.
- **2C.** Explain, why the open tubular columns are frequently used in gas chromatography over packed columns? Describe the instrumentation and working of Gas chromatography with a schematic sketch.

[2+3+5]

- 3A. Calculate the frequency and energy of a typical visible radiation of wave length 480 nm.
- **3B.** Show that the separation between the successive lines in Rotational Raman Spectra of diatomic molecule is 4B. The first three rotational Raman lines of a linear molecule are at 4.86, 8.14 and 11.36 cm⁻¹ from the exciting Raman line. Estimate the rotational constant and the moment of inertia of the molecule.
- **3C.** What are the basic principles of thermal and pyroelectric detectors of IR spectrograph? Explain their working with two examples for each.

[2+3+5]

CHM 4001 Page 1 of 2

- **4A.** What is Born Oppenheimer approximation? Explain the various energies associated with molecules and give their expressions.
- **4B.** Explain the principle of microwave spectroscopy. Explain the microwave active and inactive compounds with suitable examples.
- **4C.** Derive an expression for the frequency of absorption $(\overline{\nu})$ of a diatomic molecule considering it as anharmonic oscillator and non-rigid rotator. Illustrate the fundamental vibrational frequencies observed in the infrared spectrum of water molecule.

[2+3+5]

- 5A. Give reason i) Aniline has maximum UV absorption (λ_{max}) at 280 nm while, in acidic medium the λ_{max} shifts to 200 nm. ii) Commercial ethanol cannot be used as a solvent for recording UV spectra.
- **5B.** i) Explain the shielding effect in ¹H NMR spectroscopy by Taking methane and chloromethane as examples.
- ii) Discuss the splitting pattern and their intensities in the ¹H NMR spectrum of ethyl bromide.
- **5C.** Discuss four applications of rotational spectroscopy. The separation of the lines in the rotational spectrum of HCl is 20.6 cm⁻¹. Find the moment of inertia and internuclear distance of it. Gram atomic mass of hydrogen is 1.008 g and that of chlorine is 35.45 g respectively.

[2+3+5]