Reg. No.

SEVENTH SEMESTER BTECH. (E & C) DEGREE END SEMESTER EXAMINATION DECEMBER 2021-JANUARY 2022 SUBJECT: ERROR CONTROL CODING (ECE - 4073)

TIME: 75 min

MAX. MARKS: 20

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.

Q. No.	Questions	Marks
1A	Consider two linear block code C1 (n1, k1, d1) and C2 (n1, k1, d2), where (n ₁ ,k1,d1) and (n ₂ ,k2,d2) represents the block length, message length, minimum distance of the linear block code C ₁ and C2. Considering G1 and G ₂ as the generator matrices of C ₁ and C2 respectively, evaluate the block length, message length, minimum distance for the linear block generated by $G_3 = [G_1G_2]$ and $G_4 = \begin{bmatrix} 0 & G_1 \\ G_2 & 0 \end{bmatrix}$.	4
1B	Analyse block codes $C_1 \& C_2$ described by parity-check matrices $H_1 \& H_2$. Does $H_1 \& H_2$ result in the same codes? Determine the Generator matrix for both codes in systematic form. List all the code words of the codes. $H_1 = \begin{bmatrix} 1010\\ 1101 \end{bmatrix}$ and $H_2 = \begin{bmatrix} 0111\\ 1101 \end{bmatrix}$.	3
1C	Implement the cyclic Hamming decoding circuit using $g(x) = 1+x+x^4$. Modify this circuit to implement (12, 8) shortened decoder. Explain every step with all necessary computations.	3
2A	Design and implement a circuit to determine syndrome S_5 for a triple error correcting BCH code using minimal polynomials over GF(2 ⁴). Use $p(x)=1+x+x^4$. Explain the design steps clearly	2
2B.	A convolutional encoder is as shown in Figure 2B. Determine the generator sequences. Calculate the output of an encoder when it is fed with the input sequences $u^{(1)} = (1 \ 0 \ 1 \ 0 \ 1) \& u^{(2)} = (0 \ 1 \ 0 \ 1 \ 0)$ applying (i) convolution operation, (ii) using G matrix.	5

	INPUT u 2 	
2C.	Analyse the received code "11 01 11 00 11 " applying Viterbi Algorithm, on the trellis diagram for the convolutional encoder defined with $g^{(1)}=(101)$ and $g^{(2)}=(110)$. Estimate the code word	3