MSDF END SEMESTER MAKE-UP EXAMINATION (FEBRUARY 2022)

COURSE CODE COURSE NAME	
SEMESTER	: VII
DATE OF EXAM	: 24/02/2022
DURATION	: 45 + 3 minutes
Instructions for Student (1) ANSWER ALL THE QU (2) EACH QUESTION CAR (3) YOU ARE INSTRUCTEL SECTION.	ESTIONS.
* Required	
* This form will record yo	ur name, please fill your name.
1	
STUDENT NAME: *	
2	
REGISTRATION NU	MBER: *

The rusion classification proposed by basaratily is based on . (110)	fication proposed by Dasarathy is based on . (1 Poin	The fusion classification
--	--	---------------------------

	I/O characteristics
	Fusion type
	None
	Sensor configuration
	4
C	Communication bottleneck is a drawback in topology. (1 Point)
	Both Decentralized and Hierarchical
	Both Decentralized and Hierarchical
\bigcirc	Centralized
\bigcirc	Decentralized
	Hierarchical
	5
lr d	n image applications, fusing images of same scene taken during day and night with ifferent cameras is an example for sensor configuration. (1 Point)
\bigcirc	Competitive
	Cooperative
	Complementary
	None

State true or false

- a) PCA aims to achieve maximum class separability.b) PCA is a supervised technique used for dimensionality reduction.

10		_	•	٠.
/	L	ハ	ın:	۲١
١		O		ι,
\ '		_		٠,

\bigcirc	(a) is false and (b) is true
\bigcirc	(a) is true and (b) is false
\bigcirc	(a) is false and (b) is false
\bigcirc	(a) is true and (b) is true
	7
	patial alignment is used as the primary fusion algorithm in class of pplications. (1 Point)
\bigcirc	Dal-FeO
	Fel-DeO
	Fel-FeO
	Dal-DaO
	8
	is a constraint for DDTW (1 Point)
\bigcirc	Slope constraint
\bigcirc	Continuity
\bigcirc	Boundary conditions
	Monotonicity

State	truo	or	fal	ادم
STATE	True	Or	14	ISE.

- State true or false:
 (a) Spatial alignment is the conversion of local sensor observation time to common time axis.
 (b) Continuity is one of the constraints in DTW.

+1	٨
	ı
	t)

\bigcirc	(a) is false and (b) is true
\bigcirc	(a) is true and (b) is false
	(a) is false and (b) is false
	(a) is true and (b) is true
	10
Н	listogram estimation is the approach used to calculate (1 Point)
\bigcirc	Maximum information
	All of the above
	Mutual Information
	Multiple Information
	11
_	is more commonly referred to as Image registration. (1 Point)
\bigcap	Spatial alignment
\bigcirc	Temporal alignment
\bigcirc	Radiometric normalization
\bigcirc	Semantic alignment

GNN

None

State true or false:

- a)Min-Max is one of the parametric normalization functions. b)Binarization is a method of radiometric normalization process for converting sensor measurements into values between 0 to 1.

((1 Point)
\bigcirc	a) is false and b) is true
	a) is false and b) is false
\bigcirc	a) is true and b) is false
\bigcirc	a) is true and b) is true
	13
	Multiplication and division can be performed on scale of measurement. (1 Point)
\bigcirc	Ordinal
\bigcirc	Nominal
\bigcirc	Ratio
\bigcirc	Interval
	14
	method is a non-Bayesian method used for single target data association. (1 Point)
	NNSF
	PDAF

Thomopoulos's

Which of the following is not a characteristic of NNSF. (1 Point)
Simple to implement
Non-Bayesian
Used for single target tracking.
Complex and expensive
16
State true or false. (a) The gating method helps in pruning matches that are geometrically unlikely from the start. (b) Data association is the process of associating uncertain measurements to known tracks.
(1 Point)
(a) is true and (b) is true
(a) is false and (b) is false
(a) is false and (b) is true
(a) is true and (b) is false
17
architecture represents both multi-sensor fusion and multi-sensor integration. (1 Point)
O Pau's
Luo and Kay's
∫ JDL

Level 4 of JDL model is refinement. (1 Point)
Situation
Subobject
Object
Process
19
Data fusion focuses on the detection of relationship and entities through
reasoning. (1 Point)
a) Abductive
b) Deductive
c) Inductive
d) Both a) and c)
20
reflects the commander's intent in the context of mission goals and priorities.
(1 Point)
Information needs
Objective setting
Task and plans
Observability context

Т	he duality of Impact is	in resource management.	(1 Point)
\bigcirc	Plan		
\bigcirc	Objective		
\bigcirc	Resource		
\bigcirc	Control		
	22		
Т	he level 1 of the resource manag	ement system is	(1 Point)
\bigcirc	Resource relationship management		
\bigcirc	Mission objective management		
\bigcirc	Resource response management		
\bigcirc	Design management		
	23		
	n distributed blackboard data fus neasurement. (1 Point)	ion model, C represents	of sensor
\bigcirc	Correct value		
\bigcirc	Correlation value		
	Certain level		
\bigcirc	Confidence level		

	n level of Thomopoulos architecture, data is combined based on a statistical nodel. (1 Point)				
\bigcirc	Evidence				
\bigcirc	Sensor				
\bigcirc	Dynamics				
\bigcirc	Signal				
	25				
Т	he user requirement(UR) level 4 represents (1 Point)				
\bigcirc	Information needs				
	Tasks and plans				
\bigcirc	Collection objectives				
\bigcirc	Dynamic replanning				
26					
	ost or benefit analysis is the characteristic of recommended data fusionevel. (1 Point)				
\bigcap	Situation assessment				
	Entity assessment				
	Impact assessment				
	Signal/feature assessment				

D	asarathy's	_ I/O model represents Model-based feature extraction. (1 Point)					
	DEI-FEO						
\bigcirc	DEI-DAO						
	FEI-DAO						
	DAI-DEO						
\cup	DAI DEO						
,	28						
State true or false a) Bayesian filter technique is a probabilistic filtering technique. b) Kalman filtering works mainly based on the state matrix.							
((1 Point)						
\bigcirc	a)is false and b) is false	e					
\bigcirc	a)is true and b) is false	•					
\bigcirc	a)is false and b) is true	·					
\bigcirc	a)is true and b) is true						
4	29						
	filter is a re	ecursive estimator. (1 Point)					
\bigcirc	None						
\bigcirc	Bayesian						
\bigcirc	Information						
\bigcirc	Kalman						

	The objective of fil stream. (1 Point)	Itering is to remo	ove unrelated data fron	n the huge data
\bigcirc	Bayesian			
\bigcirc	Information			
\bigcirc	None			
	Kalman			
Ir	31 In the given Bayes equation represents (1 Poi		$P(\mathbf{x} \mid \mathbf{z}) = \frac{1}{2}$	$\frac{P(\mathbf{z} \mid \mathbf{x})P(\mathbf{x})}{P(\mathbf{z})}$
\bigcirc	Prior probability density func	ction		
\bigcirc	Conditional probability densi	ity function		
\bigcirc	Likelihood			
\bigcirc	Posterior distribution			
	32			
S	State true or false:			
ir (I	(a) Track splitting does not o into single target problems. (b) Global NNSF used for m (1 Point)			
\bigcirc	(a) is true and (b) is true			
\bigcirc	(a) is false and (b) is true			
\bigcirc	(a) is false and (b) is false			
\bigcirc	(a) is true and (b) is false			

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

