END SEMESTER EXAMINATIONS (DECEMBER 2021/JANUARY 2022) QUESTION PAPER - PART A (Copy)

COURSE CODE : ICE 4052

COURSE NAME : Nonlinear Control Systems

SEMESTER : VII

DATE OF EXAM : 24/12/2021 **DURATION** : 45 + 5 minutes

Instructions for Students:

- (1) ANSWER ALL THE QUESTIONS.
- (2) EACH QUESTION CARRIES 1 MARK.
- (3) SELECT THE MOST APPROPRIATE ANSWER
- (4) YOU ARE INSTRUCTED TO INFORM THE INVIGILATOR AFTER SUBMISSION OF THIS FORM IN THE CHAT SECTION.

* Required	
* This form will record your name, please fill your name.	
1 STUDENT NAME: *	
STODENT INAIVIE.	

REGISTRATION NUMBER: *

The value must be a number
3
Conditions of are necessary and sufficient condition for the asymptotic stability of the system. (1 Point)
All of the above
○ Sign definiteness
○ Krasovaskii's method
Variable gradient method
4
If G is the open-loop transfer function of the system and N is the describing function of a single nonlinearity in the forward path. Then the condition under which we would have sustained oscillations in the system will be: (1 Point)
G*N=1
G*N=0
G*N=-1
○ G>=N

For the nonlinear characteristics shown as in below figure, what is the describing function?
(1 Point)

- M/Pi
- O 2M/Pi
- 4M/Pi
- 3M/Pi

For state feedback stabilization of the system given below, which of the following condition is not necessary.

(1 Point)

$$\dot{x} = f(x, u)$$

- \bigcirc f(0,0)=0 in the domain D
- f(x,u) is continuously differentiable in domain D
- x=0 and u=0 is a part of the domain D
- Origin is not a part of the domain D

What is the type of passive system represented by the below figure? (1 Point)

	.	
()	Output-feedback	passive
	0 0.00 0.0 .000.000.00	00.000

- Lossless passive
- Feedback passive
- Input-feedforward passive

8

A nonlinear system produces an output, W as the cube of its input X. Assume the input to be a sinusoidal signal and nonlinear output has an odd function characteristic. The term b1 in the output W is _____. (1 Point)

- () 1
- 3A^2/4
- () 0
- 3A^3/4

The relationship between input and output for a system is shown below. Identify the correct type of nonlinearity.

(1 Point)

Relay with hysteresis
Relay with saturation
Hysteresis
Backlash
10
Because of imperfection in the design of switching surface and delays sliding mode control suffers from (1 Point)
Chattering

Bifurcations

Limit cycle

Chaos

What is the condition for the system to become lossless? (1 Point)
\bigcirc if u^T y >=
if u^T y <=0
○ if u^T y=0
12
A nonlinear system produces an output, W as the cube of its input X. Assume the input to be a sinusoidal signal and nonlinear output has an odd function characteristic. The describing function for the nonlinear component can be obtained as (1 Point)
C. 4A^3/3
○ 3A^2/4
○ d. 4A^2/3
○ 3A^3/4
13
For nonlinearities which are characterized as single valued, N is real and therefore the plot of $-1/N$ will always lies on the (1 Point)
First and second quadrant
First quadrant
Real axis
Imaginary axis

In a stable control system backlash can cause which of the following? (1 Point)
○ Underdamping
O Poor stability at reduced values of open loop gain
O Low-level oscillations
Overdamping
15
Which of the following is not considered to be a formulation of control problem? (1 Point)
Feedback linearization
○ Tracking
○ Stabilizing
O Disturbance rejection

Which of the following statement is correct with respect to the below figure? (1 Point)

- Both are characteristics of non-passive resistor
- Both are characteristics of passive resistor
- Both are characteristics of nonlinear non-passive resistor
- Both are characteristics of nonlinear passive resistor

17

Which of the following is not a property of Lyapunov function? (1 Point)

- It is a scalar function
- It is a unique function for a given system
- O It is a positive definite, at least in the neighborhood of origin
- Its time derivative is non-positive

Which of the following control methods can ensure asymptotic regulation under all parameter perturbations that do not destroy the stability of the closed loop system? (1 Point)
○ Sliding control
Gain scheduling control
C Lyapunov control
O Integral control
19
The describing function for a system with static non-linearity dependent only on
(1 Point)
Phase of the input sinusoidal signal.
O Polarity of the input sinusoidal signal.
The amplitude of the input sinusoidal signal.
Frequency of input sinusoidal signal
20
If the relative degree is coming out to be greater than the order of the system, which of the following statement is correct. (1 Point)
System would not be controllable
O Improper system
System model is not valid
System is unstable

Consider the following statements.

- 1. Nonlinear systems have unique equilibrium point
- 2. Describing function method is used for the prediction of limit cycles in nonlinear systems.
- 3. Describing function method is an approximated analysis.

Which of these statements are correct? (1 Point)
② 2 and 3
① 1 and 2
① 1 and 3
1,2 and 3
22
A nonlinear system produces an output, W as the cube of its input X. Assume the input to be a sinusoidal signal and nonlinear output has an odd function characteristic. The term a1 in the output W is (1 Point)
○ 0
○ 3A^3/4
<u> </u>

For the closed loop system shown below, the loop has to be rearranged in such a way that Nt=_____ in order to perform the describing function analysis.

(1 Point)

()	N1*N	12
		-

- None of the above
- N1-N2
- N1+N2

24

Which of the following statement is not completely correct with respect to limit cycle in nonlinear systems?

(1 Point)

- Causes wear and failure in mechanical systems
- Causes instability of the equilibrium point
- Causes loss of accuracy in regulation
- Causes the controller design to become complex

What is the type of passive system represented by the below figure?

(1 Point)

Feedback	

Strictly passive

Output-feedback passive

Input-feedback passive

26

Which of the following control methods can extend the validity of the linearization approach to a range of operating points?

(1 Point)

()	IVIK	AC c	on'	rroi

Robust control

Sliding control

Gain scheduling control

12/30/2021

Which of the following statement is more suitable for the control law defined as? (1 Point)

$$u = \frac{1}{x_2 + 1} (v - f_1)$$

- The control law is not valid.
- The control law is uniformly defined
- The control law is defined everywhere, except at the singularity points.
- The control law is globally defined.

Analyze the given figure and select the FALSE statement for the given scenario. (1 Point)

	D D/	•	1.1	1000 000 1 000 0000
()	Point B'	IS	stable	system

- O Point B is a limit cycle
- O Point B" is stable system
- O Point A' is stable system

29

The state feedback stabilization problem for the system is the problem of designing a feedback control law such that the origin is _____. (1 Point)

	10 TO		
()	Uniformly	asymptoticall	v ctable
	OHIIOHIIV	asviiibtoticaii	v Stable
$\overline{}$,	, ,	,

- All of the above
- Marginally stable
- Lyapunov stable

For the nonlinear system given below, the relative degree is _____. (1 Point)

 $\dot{x}_1 = -ax_1 + u$ $\dot{x}_2 = -bx_2 + k - cx_1x_3$ $\dot{x}_3 = \theta x_1x_2$ $y = x_3.$

- O 2
- \bigcirc 4
- () 1
- O 3

31

The points at which derivatives of all the state variables are zero are _____. (1 Point)

- Initial condition
- Nonsingular points
- Singular points
- Origin

The part of the system dynamics which has been rendered unobservable in the input-output linearization is called as (1 Point)
O Internal dynamics
Inverse dynamics
Zero dynamics
Uncontrollable state

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms