DEPARTMENT OF INSTRUMENTATION & CONTROL ENGINEERING _ SEMESTER B.TECH. (ELECTRONICS & INSTRUMENTATION)

SEVENTH SEMESTER B. TECH (ELECTRONICS AND INSTRUMENTATION)

PROCTORED ONLINE END SEMESTER EXAMINATION Dec. 21/Jan. 22

SUBJECT: ROBUST CONTROL [ICE 4053] TIME: 9.20 – 10.35 AM

DATE: 30-12-2021 MAX MARKS 20

PART A

Q.	Questions
No ·	
1.	Which is not an issue in Control System Design w.r.t robust control (1 Point)
	Model the resulting system to be controller
	Reduce the model mismatch 🗸
	Tune the controller online if necessary
	Analyze the resulting model: Determine its properties
	No correction required
2	During multiplicative perturbation, the disk will be formed with center 1 and radi (1 Point)
	○ Mod(W2) ✓
	○ Mod(W2/W1)
3.	

For the given system transfer function, find the Parity Interlacing Property(PIP) is satisfied not

$$P(s) = \frac{s^2 - 5s + 2}{s^2 - 4s + 3}$$

4. 6

Under the Loopshaping technique, the above condition is true when W1 is less than one

A) True B) False

5. For the P Inverse unstable problem, to find the stable function, the T1 is given b (1 Point)

- T1=W1MN
- T1=W2YN
- T1=W1MY

 ✓
- T1=W2MN

6.	Spectral factorization uses the all pass factor with property equated to (1 Point)
	O.5
	○ 1 ✓
	0.75
	O 0
7.	Kharitnov polynomials are given below, find the stability of the same (1 Point)
	$k_1(s) = 8 + 9.5s + 8s^2 + s^3$
	○ Stable ✓
	○ Unstable
8.	In the solution of modified problem, Q is identified satisfyin (1 Point)
	$\bigcirc Norm(U_4U_1 - U_4^{-1}U_1Q)_{\infty} < 1$
	$\bigcirc Norm(U_4U_2 - U_4^{-1}U_1Q)_{\infty} < 1$
	$Norm(U_4^{-1}U_1 - U_4^{-1}U_2Q)_{\infty} < 1 \checkmark$
	$\bigcirc Norm(U_4U_1 - U_4^{-1}U_1^{-1}Q)_{\infty} < 1$
9.	The condition for weighting function under loopshaping for W1 and W2 at low frequence (1 Point)
	$ W_2 > 1 > W_1 $
	$ W_2 < 1 < W_1 $
	$\bigcirc W_1 > 1 > W_2 \checkmark$
	$ W_1 < 1 < W_2 $

	MANIPAL MAINIPAL (A constituent unit of MAHE, Manipal)
10.	In controller parameterization the sensitivity transfer function is given by (1 Point)
	OS = 1 + PQ
	$S = 1 - \frac{P}{Q}$ $S = PQ$
	$OS = IQ$ $OS = 1 - PQ \checkmark$
11.	For robust performance condition, is a condition (1 Point)
	$\bigcirc Norm(W_1T)_{\infty} < 1$
	$\bigcirc Norm(W_2T)_{\infty} < \frac{1}{2}$
	$\bigcirc Norm(W_1S)_{\infty} < \frac{1}{2} \checkmark$
	$\bigcirc Norm(W_2T)_{\infty} < 1$
12.	For a system with perturbation , the robust stability condition is given by (1 Point)
	$(P + Del. W_2)$ $\bigcirc norm(W_2T)_{\infty}$
	$\bigcirc norm(W_2CS)_{\infty} \checkmark$
	$\bigcirc norm(W_2PS)_{\infty}$
	$\bigcap norm(W_2S)_{\infty}$

13.	From the basic control system, the output 'y' is given by
	(1 Point)

 $\bigcap P(d+u) \checkmark$

P(y+n)

 $\bigcap P(r-v)$

C(r-v)

The plant, controller and filter transfer functions are given as below, The transfer function Y(s)/d(s) is (1 Point)

 $P(s) = \frac{1}{(s-1)(s-2)}; C(s) = \frac{(s-1)}{s+2}; F(s) = \frac{1}{(s+3)}$

 $\frac{(s+2)(s+3)}{s^4+s^3-8s^2-4s+13}$

 $\frac{(s+2)(s-1)}{s^4+s^3-7s^2-8s+13}$

 $\frac{(s-2)(s-2)}{s^4+s^3-8s^2-4s+13}$

Find the internal stability of Y(s)/u(s) = -PCF/1+PCF (1 Point)

$$P\left(s\right) = \frac{1}{(s-1)(s-2)}; \ C\left(s\right) = \frac{(s-1)}{s+2}; \ F\left(s\right) = \frac{1}{(s+3)}$$

Marg inaly stable

Stable

○ Unstable ✓

	ALDE (II CONSTRUCTE STATE Of THIRIDS, INCOMPAN)
16	Using Bezout's Identity the complementary sensitivity function is given by
	(1 Point)

- T = M(Y + NQ)
- T = Q(Y + NM)
- T = Y(N + MQ)
- T = N(X + MQ)

- $F_I(p,k) = P_{12} + P_{11}K(I P_{11}k)^{-1}P_{12}$
- $F_{I}(p,k) = P_{11} + P_{12}K(I P_{22}k)^{-1}P_{12} \checkmark$
- $F_{I}(p,k) = P_{22} + P_{21}K(I P_{21}k)^{-1}P_{11}$
- $F_{I}(p,k) = P_{12} + P_{11}K(I P_{11}k)P_{12}$
- During the design of robust controller, if Q(s) is improper, filter J(s) will be used. In J(s) the tuning parameter is (1 Point)
 - Order'n'
 - Time cons $\tan t'T'$
 - Both 'n' and 'T'

 ✓
 - None of the above

19.	Under modified problem, to reduce the model mismatch condition, U4 is defined as
	(1 Point)

- U4 = U3
- $U4 = U3 \frac{1}{2}$
- U4 = U1 U2
- $U4 = \frac{1}{2} U3$

- \bigcirc norm $(W_2S) < 1$
- \bigcirc norm $(W_1S) < 1$
- \bigcirc norm $(W_2S) < \frac{1}{2}$
- \bigcirc norm $(W_1S) < \frac{1}{2} \checkmark$

- $\left[\frac{p_{perturbed}}{p_{no \min al}}\right]$

- $\left[\frac{p_{no \ min \ al}}{p_{perturbed}} 1 \right]$

22.	In full information problem LFT frame work, the following is one of the assumption (1 Point)
	\bigcirc (A, B_2) is stabilizable \checkmark
	\bigcirc (A, B_1) is stabilizable
	\bigcirc (C_2,A) is detectable
	\bigcirc (C_2, B) is detectable
23.	For a basic control system block, the transfer function of e/r is (1 Point)
	$ \frac{PC}{1+PC} $ $ \frac{1}{1+PC}\checkmark $
	$\frac{p}{1+PC}$
	$\frac{C}{1+PC}$
25.	For finding the internal stability of the system which combinations are considered as outpout (1 Point)
	$\bigcap r,d,n$
	\bigcirc y, e, u \checkmark
	\bigcirc r, e, n
	\bigcap n,d,u
27.	Condition given below is too hard mathematical analysis, hence using it reduced to model mismatching problem (1 Point)
	$norm(W_1S + W_2T)_{\infty} < 1$
	Order reduction
	○ Spectral Factorization ✓
	Robust design
	Disc problem analysis

• •	Arps: (A Consument unit of MAILL, Mampa)
28.	Norms for signals have properties (1 Point)
	○ Eight
	○ Two
	○ Four✓
	○ Six
29.	Infinity norm of a signal is a (1 Point)
	○ Supremum value of its obsolute ✓
	Least value of its obsolute
	○ Always 1
20	Cles than 1
30.	The selection of weighting function W2 represents the (1 Point)
	Model mismatch
	○ Uncertainty profile✓
	○ W1 complement
	Sensitivity function covering function