MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

DEPARTMENT OF MECHATRONICS VII SEMESTER B.TECH. MECHATRONICS

END SEMESTER EXAMINATIONS, DEC. 2021

SUBJECT: HYBRID VEHICLE TECHNOLOGY [MTE 4072]

Date: 27/12/2021

MAX. MARKS: 50

Instructions to Candidates:

Answer **ALL** the questions.

Data did not provide any, may be assumed suitably.

Q. No	PART – A (30×1 = 30 Marks) 50 Mins.	M	CO	РО	LO	BL
1.	Identify the type of vehicle technology used in: BMW – i3 a. Series Hybrid b. Parallel Hybrid c. Pure EV d. Pure EV 	1	1	1	1	3
2.	Identify the type of vehicle technology used in: Toyota Mirai a. Series Hybrid b. Parallel Hybrid c. Pure EV d. Fuel Cell Based EV	1	1	1	1	3
3.	An open convertible vehicle of Mass=100kg having following coefficients (Rolling resistance coefficient = 0.01, air density = 1.27 kg/m^3, rotational inertial constant = 4%, Cd=0.6 and Af=1.9m^2). Estimate the grading and rolling resistive forces when vehicle is uphill with road angle of 10 degrees. a. 170.35N and 9.66N b. 9.66N and 170.35N c. 170.35N and 170.35N d. 9.66N and 9.66N	1	2	1	1	3
4.	An open convertible vehicle of Mass=100kg having following coefficients (Rolling resistance coefficient = 0.01, air density = 1.27 kg/m^3, rotational inertial constant = 4%, Cd=0.6 and Af=1.9m^2). Estimate the aerodynamic drag when vehicle is at 50km/hr. a. 109 N b. 139.64 N c. 1809.75 N d. 10.054 N	1	2	1	1	3
5.	An open convertible vehicle of Mass=100kg having following coefficients (Rolling resistance coefficient = 0.01, air density = 1.27 kg/m^3, rotational inertial constant = 4%, Cd=0.6 and Af=1.9m^2). Accelerating force when vehicle is accelerating at 7 m/s^2. a. 20 N b. 28 N	1	2	1	1	3

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

c. 25 N d. 2800N					
 6. A vehicle having large grade has the following specific Rolling resistance coefficient=0.01, Drag coefficient 489.296 kg, Vehicle frontal area of 1.98 m², Dens runs at 3500 RPM, Produces 186 N-m of torque. Driveline efficiency is 88%. Road wheel radius is 9 in 14.7ft. Height of center of gravity is 1.64ft. Ad Estimate the tractive effort required by front and r gravity (COG) is at mid length of vehicle from both vehicle front wheel tractive effort = 1277 N, Rear Wheels. Front wheel tractive effort = 1356.5 N, Rear Wheels. Front wheel tractive effort = 1277 N, Rear Wheels. Front wheel tractive effort = 1277 N, Rear Wheels. Front wheel tractive effort = 1356.5 N, Rear Wheels. Front wheel tractive effort = 1277 N, Rear Wheels. Front wheel tractive effort = 1277 N, Rear Wheels. Front wheel tractive effort = 1277 N, Rear Wheels. Front wheel tractive effort = 1277 N, Rear Wheels. Front wheel tractive effort = 1277 N, Rear Wheels. Front wheel tractive effort = 1277 N, Rear Wheels. Front wheel tractive effort = 1277 N, Rear Wheels. Front wheel tractive effort = 1277 N, Rear Wheels. Front wheel tractive effort = 1277 N, Rear Wheels. Front wheel tractive effort = 1277 N, Rear Wheels. Front wheel tractive effort = 1277 N, Rear Wheels. Front wheel tractive effort = 1277 N, Rear Wheels. Front wheel tractive effort = 1277 N, Rear Wheels. Front wheel tractive effort = 1277 N, Rear Wheels. Front wheel tractive effort = 1277 N, Rear Wheels. Front wheels tractive effort = 1277 N, Rear Wheels. Front wheels tractive effort = 1277 N, Rear Wheels. Front wheels tractive effort = 1277 N, Rear Wheels. Front wheels tractive effort = 1277 N, Rear Wheels. Front wheels tractive effort = 1277 N, Rear Wheels. Front wheels tractive effort = 1277 N, Rear Wheels. Front wheels tractive effort = 1277 N, Rear Wheels. Front wheels tractive effort = 1277 N, Rear Wheels. Front wheels tractive effort = 1277 N, Rear Wheels. Front wheels tractive effort = 1277 N, Rear Wheels. Front wheels tractive effort = 1277 N, Rear Wheels. Front wheels	nt=0.5, Mass of Vehicle ity=1.275 kg/m^3. Engine Gear reduction ratio is 3, nches. Length of vehicle is hesive coefficient is 0.6. ear wheel when Center of wheels. eel tractive effort = 1436 N eel tractive effort = 1277 N neel tractive effort = 1356.5	2	1	1	3
N 7. A vehicle having large grade has the following speci	fications: 1	2	1	1	3
Rolling resistance coefficient=0.01, Drag coefficient 489.296 kg, Vehicle frontal area of 1.98 m ² , Dens runs at 3500 RPM, Produces 186 N-m of torque. Driveline efficiency is 88%. Road wheel radius is 9 in 14.7ft. Height of center of gravity is 1.64ft. Ad Estimate the tractive effort required by front and r gravity is at front wheel.	ity=1.275 kg/m^3. Engine Gear reduction ratio is 3, nches. Length of vehicle is hesive coefficient is 0.6.				
 a. Front wheel tractive effort = 1277 N, Rear Wheel b. Front wheel tractive effort = 2875 N, Rear Wheel c. Front wheel tractive effort = 1.38 N, Rear Wheel d. Front wheel tractive effort = 0 N, Rear Wheel tractive effort = 0 N, Rear Wheel 	eel tractive effort = 1.38 N el tractive effort = 2875 N				
 8. A vehicle having large grade has the following specient Rolling resistance coefficient=0.01, Drag coefficient 489.296 kg, Vehicle frontal area of 1.98 m^2, Dens runs at 3500 RPM, Produces 186 N-m of torque. Driveline efficiency is 88%. Road wheel radius is 9 in 14.7ft. Height of center of gravity is 1.64ft. Ad Estimate the tractive effort required by front and r gravity is at rear wheel. a. Front wheel tractive effort = 1277 N, Rear Wheel tractive effort = 1277 N, Re	fications: 1 nt=0.5, Mass of Vehicle ity=1.275 kg/m^3. Engine Gear reduction ratio is 3, nches. Length of vehicle is hesive coefficient is 0.6. ear wheel when Centre of eel tractive effort = 1436 N	2	1	1	3
 b. Front wheel tractive effort = 2875 N, Rear Whe c. Front wheel tractive effort = 1.38 N, Rear Whe d. Front wheel tractive effort = 2875 N, Rear Whe 	el tractive effort = 2875 N eel tractive effort = 0 N				
9. A pure EV is redesigned to extend the range of the v in Fig with the total vehicle propulsion power of 106	-	5	1	1	3

	MANIPAL	INSTITUTE	OF TECHNOLOG	ΞY
and the	MANIPAL			

	Winger Wer (A constituent unit of MAHE, Manipal)					
	Identify the type of vehicle.					
	155.343 miles					
	← 207.12166 miles					
	207.12100 miles					
	a. PHEV					
	b. EV					
	c. Pure Hybrid d. Mild Hybrid					
10.	A pure EV is redesigned to extend the range of the vehicle as depicted	1	5	1	1	3
	in Fig with the total vehicle propulsion power of 106.66 kW.					
	Estimate the power rating of the motor					
	155.343 miles					
	← 207.12166 miles					
	207.12100 miles					
	a. 80kW					
	b. 200kW					
	c. 120kW d. 160kW					
11.	A pure EV is redesigned to extend the range of the vehicle as depicted	1	5	1	1	3
	in Fig with the total vehicle propulsion power of 106.66 kW.					
	Estimate the intermittent power rating of the motor					
	155.343 miles					
	\leftarrow					
	207.12166 miles					
	a. 80kW					
	b. 200kW					
	c. 120kW d. 160kW					
12.	d. 160kW A pure EV is redesigned to extend the range of the vehicle as depicted	1	5	1	1	3
	in Fig with the total vehicle propulsion power of 106.66 kW.					
	Estimate the peak power rating of the motor					
	155.343 miles					
	✓ 207.12166 miles					
	207.12100 miles					

MANIPAL INSTITUTE OF TECHNOLOGY

	MANIPAL (A constituent unit of MAHE, Manipal)					
	a. 80kW					
	b. 200kW					
	c. 120kW					
	d. 160kW					
13.	Identify the Hybridness for the vehicle: Nissan Leaf	1	5	1	1	3
	a. 0					
	b. 50					
	c. 75					
	d. 100					
14.	Identify the Hybridness for the vehicle: Maruti Swift Dezire (Petrol)	1	5	1	1	3
	a. 0					
	b. 50					
	c. 75					
	d. 100					
15.	A Hybrid vehicle has Motor Rated of 80kW. If the vehicle motor has to be	1	5	1	1	3
	designed with the desired volume specification as shown in Fig, magnetic flux					
	density of 1.5 Tesla, 480 Ampere turns, proportional constant of 19.64, Calculate					
	the rated torque of the Motor.					
	20cm					
	30 cm a. 510Nm b. 520Nm c. 500Nm a. 490Nm					
16.	a. 510Nm b. 520Nm c. 500Nm	1	5	1	1	3
16.	a. 510Nm b. 520Nm c. 500Nm a. 490Nm	1	5	1	1	3
16.	 a. 510Nm b. 520Nm c. 500Nm a. 490Nm A Hybrid vehicle has Motor Rated of 80kW. If the vehicle motor has to be	1	5	1	1	3

	MANIPAL INSTITUTE OF TECHNOLOGY	
Namare Brunt	MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)	

	^{Wey} (A constituent unit of MAHE, Manipal)	1				
	20cm 30 cm 30 cm <					
17.	A Hybrid vehicle is having motor rated speed as 1500RPM. The vehicle is	1	5	1	1	3
1/.	designed for maximum cruising speed of 62.1371 miles per hour, gear ratio of				1	5
	3.393 and vehicle tyre radius on 11.81 inches. Recognize suitable motor.					
	a. Permanent Magnet Based Motor					
	b. Induction Based Motor					
	c. Reluctance Based Motor					
	d. DC Motor					
18.	For frequent changes in vehicle propulsion power distribution of Hybrid,	1	5	1	1	2
10.	identify the power plant suitable.	-		-	-	_
	a. Diesel IC Engine					
	b. Petrol IC Engine					
	c. Electric Motor					
	d. IC Engine + Electric Motor					
19.	In an IC Engine based vehicle, the aerodynamic component is of typically	1	2	1	1	2
	a. 10%					
	b. 5%					
	c. 35%					
	d. 20%					
20.	Multi Input DC-DC converters are used for	1	3	1	1	2
	a. Hybridness of Battery and Flywheel					
	b. Hybridness of IC Engine and Battery					
	c. Hybridness of Battery and Supercapacitor					
	d. Hybridness of Flywheel and supercapacitor					
21.	Identify the Motor that has good FLAT Efficiency	1	3	1	1	2
	a. PMSM					
	b. IM					
	c. DC Motor					
	d. Synch-Rel					
22.	Identify the configuration	1	2	1	1	3

MANIPAL	INSTITUTE OF	TECHNOLOGY
MANIPAL (A constituent unit of N	(AHE Manipal)	

<u> </u>	Montero and (A constituent unit of MAHE, Manipal)			1		
	 Number of the speed (km/h) a. Configuration 1 b. Configuration 2 c. Configuration 3 d. Configuration 4 					
23.	Recognize the recent development of semiconductor devices for Electric	1	3	1	1	3
	vehicles					
	a. IGBT using GaN					
	b. IGBT using Si					
	c. MOSFET with SiC d. MOSFET with GaN					
24.	Identify the type of hybrid configuration	1	2	1	1	3
	F G T B P M a. Series b. Parallel c. Series-Parallel d. Complex					
25.	If in the Torque coupling $T = k1*T1 + k2*T2$, $k1 = k2 = 1$, then identify the type	1	2	1	1	3
	of configuration					
	a. Configuration 1					
	b. Configuration 2					
	c. Configuration 3					
26.	d. Configuration 4 Identify the Motor and its efficient operating point	1	3	1	1	3
		-				

II	MANIPAL INSTITUTE OF TECHNOL MANIPAL (A constituent unit of MAHE, Manipal)	OGY	1	1	1	
	A A A A A A C C C C C C C C C C C C C					
	a. PMSM, B					
	b. PMSM, C					
	c. PMSM, D					
27.	d. IM, A	1	2	1	1	3
21.	Recognize the hybrid configuration that requires bulky motor a. Series	1				5
	b. Parallel					
	c. Series-Parallel					
	d. Complex					
28.	Recognize the mode in general drive cycle that aids for regeneration in EV	1	4	1	1	2
	a. Initial Acceleration					
	b. Cruising at rated speed					
	c. Cruising at max speed					
	d. Retardation					
29.	$\int_{40}^{10} \int_{20}^{10} \int_{20}^{10} \int_{300}^{10} \int_{400}^{10} \int_{500}^{10} \int_{t}^{t}$ Identify the type of drive cycle	1	4	1	1	3
	a. FTP					
	b. EUDC					
	c. JP					
20	d. NEDC			1	-	
30.	Function of control systems in EV/HEV is to	1	4	1	1	2
	 a. minimize exhaust emissions b. maximize fuel efficiency 					
	b. maximize fuel efficiencyc. both minimize exhaust emissions and maximize fuel efficiency					
	d. None					

MANIPAL INSTITUTE OF TECHNOLOGY

DAD	T - B (20 MARKS) (A constituent unit of MAHE, Manipal)				75 M	ling
FAK	$\mathbf{I} = \mathbf{D} \left(20 \text{ WARRS} \right)$				75 IV.	iins.
1A.	Compare the vehicle technologies based on economic and environmental aspects.	3	1	1,2	1,2	4
18.	Examine the power flow for the hybrid configuration shown in Fig. 1B.	3	2	1,2	1,2	4
1C.	Inspect the switching control techniques and devices used in the Kelly converter shown in Fig. 1C.	4	3	1,2	1,1 3	4
2A.	Compare the performances of Permanent Magnet Synchronous Motor and Synchronous Reluctance Motor for Electric Vehicle Technology.	3	3	1,2	1,2	4
2B.	Examine the key role of using Drive Cycles and their types in EV controls.	3	4	1,2	1,2	4
2C.	Analyse types of parallel hybrid vehicles based on Hybridness.	4	5	1,2	1,2	4