Reg. No.					

IV SEMESTER B.TECH. (CHEMICAL ENGINEERING) ENDSEM EXAMINATIONS, JUN 2022

SUBJECT: CHEMICAL ENGINEERING THERMODYNAMICS-II [CHE 2251]

REVISED CREDIT SYSTEM (11/06/2022)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data may be suitably assumed.

1A	Calculate the fugace compressibility face P, bar PV/RT	•	-	200 1.0365	400 1.2557	800 1.7959	K. (Use	5
1B	The molar enthalpy $H = 120x_1 + 70x$ where H is in J/m	$x_2 + (15x_1)$	$+8x_{2})x_{1}x$	2		given by the r	relation	3
1C	Justify the following (a) The concept of gaseous mixture. (b) Raoult's law is	ideal gase	ous solutior			n that of an id	eal	2
2A	Check whether the $ln\gamma_1 = 500 + 140$ $ln\gamma_2 = -120x_2 - $ of the Gibbs Duher	$90x_1 - 60x_1$	$x_1 - 20x_2^2 + 20x_2^2 + 20$	$+20x_1x_2^2$ $0x_1x_2^2$ (No	te: The fina		oth sides	4
2B	With the help of pl equilibria.	nase diagra	am, explain	the effect of	of pressure	on constant p	ressure	3
2C	Define Henry's law	w, Duhem	theorem, Cı	ritical enve	lope			3

3A	Given the properties of the components										, 3
	D				temperat	ure (K)	•				
	Propane	2		369.9			42.57 33.75				
	n-pentan	е		469.8			33.73				
3B	The syster Determine composition of n-penta respective	the conormal to the conormal $y_1 = 0$ the conormal to the co	$\begin{array}{l}\text{nposition}\\0.45,y_2=\end{array}$	of liquid v :0.3 and y	which is $v_3 = 0.25$	in equilib at 70°C.	rium wit At 70°C,	h vapour the vapo	of our pressu		3
3C	With the help of phase diagrams, discuss the maximum boiling azeotrope.										4
4A	Methanol(1)- acetone(2) forms an azeotrope at 760 Torr with x_1 =0.2 and t=55.7°C. The vapour pressures at 55.7°C are P_1^S =530.97 Torr and P_2^S =749.65 Torr. Predict the P-x-y data (any two sets of data) at 55.7°C. Assume that van Laar equation is applicable to the system.										4
4B	A vapour mixture of 20 mole percent methane, 30 mole percent ethane and 50 mole percent propane is available at 30°C. Making use of the K factor chart determine the percent at which condensation begins if the mixture is isothermally compressed. Also estimate the composition of the first drop of liquid that forms.										3
	Vapour liquid equilibrium data for the system methanol (1)- benzene (2) at 313 K are given below. Calculate the values of $ln(\gamma_1/\gamma_2)$.										
	are given l	below. C	sarcurate t	ne varues	of $in(\gamma_1)$	$/\gamma_2$).				_	
ıc	are given x_1	0	0.141	0.304	0.468	(γ_2) . 0.643	0.702	0.878	1.00]	3
C			_	_			0.702 0.578	0.878 0.670	1.00		3
IC	x_1	0	0.141	0.304	0.468	0.643					3
4C	$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$	$\begin{vmatrix} 0 & & & \\ 0 & & & \\ 24.46 & & & \\ $	0.141 0.507 46.52 reaction the second of $O_2 + 4H$	0.304 0.531 48.32	0.468 0.543 48.73	0.643 0.566 48.81 t 298 K.	0.578 47.61	0.670	1.000		3
4C	$\begin{bmatrix} x_1 \\ y_1 \\ P, kPa \end{bmatrix}$ For the following the following states at the follow	$\begin{vmatrix} 0 & 0 \\ 0 & 24.46 \end{vmatrix}$ 24.46 24.46 24.46 24.46 24.46 24.46	0.141 0.507 46.52 reaction the second secon	0.304 0.531 48.32 ne data are $\Delta G_{f,298}^{o}$	0.468 0.543 48.73	0.643 0.566 48.81 t 298 K.	0.578 47.61	0.670	1.000		3
4C	$ \begin{array}{c c} x_1 \\ y_1 \\ P, kPa \end{array} $ For the following the fol	$\begin{vmatrix} 0 & 0 \\ 24.46 & \end{vmatrix}$ $20 \rightarrow C$ $\begin{vmatrix} \Delta H_{f,i}^{o} \\ 10^{-3} & \end{vmatrix}$	0.141 0.507 46.52 reaction the $O_2 + 4H_2$ $O_3 \times O_4$ $O_3 \times O_4$ $O_4 \times O_5$ $O_5 \times O_6$ $O_7 \times O_7$ $O_7 \times O$	0.304 0.531 48.32 ne data are $\Delta G_{f,298}^{o}$ J/mol	0.468 0.543 48.73	0.643 0.566 48.81 t 298 K.	0.578 47.61	0.670 44.52	1.000 35.12		3
	$\begin{bmatrix} x_1 \\ y_1 \\ P, kPa \end{bmatrix}$ For the following the following states at the follow	$\begin{vmatrix} 0 & 0 \\ 24.46 & \end{vmatrix}$ $20 \rightarrow C$ $\begin{vmatrix} \Delta H_{f,i}^{o} \\ 10^{-3} & \end{vmatrix}$	0.141 0.507 46.52 reaction the $O_2 + 4H_2$ $O_3 \times O_4$ $O_3 \times O_4$ $O_4 \times O_5$ $O_5 \times O_6$ $O_7 \times O_7$ $O_7 \times O$	0.304 0.531 48.32 ne data are $\Delta G_{f,298}^{o}$	0.468 0.543 48.73	0.643 0.566 48.81 $c_p, J/t$ 17.44	0.578 47.61 mol K	0.670 44.52	1.000 35.12		3
4C 5A.	$ \begin{array}{c c} x_1 \\ y_1 \\ P, kPa \end{array} $ For the following the fol	$\begin{vmatrix} 0 & 0 \\ 24.46 & \end{vmatrix}$ $20 \rightarrow C$ $\begin{vmatrix} \Delta H_{f,i}^{o} \\ 10^{-3} & \end{vmatrix}$	0.141 0.507 46.52 reaction the $O_2 + 4H_1$ $O_2 + 4H_2$ $O_3 \times O_4$ $O_4 \times O_4$ $O_4 \times O_4$	0.304 0.531 48.32 ne data are $\Delta G_{f,298}^{o}$ J/mol	0.468 0.543 48.73 e given a $\times 10^{-3}$,	0.643 0.566 48.81 $c_p, J/1$ 17.44 1.117	0.578 47.61 mol K $^{49} + 60.4$ $^{4} \times 10^{-6}$	0.670 44.52	1.000 35.12		
	x_1 y_1 P, kPa For the fole $CH_4 + 2H$ $Methane$	$\begin{vmatrix} 0 & 0 \\ 24.46 & \end{vmatrix}$ 24.46 24.46 24.46 24.46 24.46 24.6 24.46 24.6 24.46 24.6	0.141 0.507 46.52 reaction the $O_2 + 4H_2$ $O_3 \times O_4$ $O_4 \times O$	0.304 0.531 48.32 ne data are $\Delta G_{f,298}^{o}$ J/mol -50.66	0.468 0.543 48.73 e given a $\times 10^{-3}$,	0.643 0.566 48.81 c_p , J/1 17.44 1.117 28.85	0.578 47.61 mol K $\frac{49 + 60.4}{4 \times 10^{-6}}$ $\frac{40 + 12.0}{4 \times 10^{-6}}$	0.670 44.52 44.52 449×10 T^2	1.000 35.12 $-3T + -3T$		
	x_1 y_1 P, kPa For the fole $CH_4 + 2H$ $Methane$ $Water$ $Carbon$ $dioxide$	$\begin{array}{c c} 0 & 0 \\ \hline 24.46 \\ \hline \\ llowing \\ l_2O \rightarrow C \\ \hline & \Delta H_{f,i}^o \\ 10^{-3} \\ \hline & -74.9 \\ \hline & -241 \\ \hline & -393 \\ \hline \end{array}$	0.141 0.507 46.52 reaction the $O_2 + 4H_2$ $O_3 \times O_4$ $O_4 \times O$	0.304 0.531 48.32 ne data are $\Delta G_{f,298}^{o}$ J/mol -50.66 -228.60	0.468 0.543 48.73 e given a $\times 10^{-3}$,	0.643 0.566 48.81 $c_p, J/1$ 17.44 1.117 28.85 45.36	0.578 47.61 mol K $49 + 60.4$ 47×10^{-6} $60 + 12.6$ $69 + 8.68$	0.670 44.52 44.52 7^{2} 0.55×10 0.670 0.670 0.670 0.670 0.670	1.000 35.12 $-3T + -3T$ $3T$		
	x_1 y_1 P, kPa For the following the second	$\begin{array}{c c} 0 & 0 \\ \hline 24.46 \\ \hline \\ llowing \\ l_2O \rightarrow C \\ \hline & \Delta H_{f,i}^o \\ 10^{-3} \\ \hline & -74.9 \\ \hline & -241 \\ \hline & -393 \\ \hline \end{array}$	0.141 0.507 46.52 reaction the $O_2 + 4H_2$ $O_3 \times O_4$ $O_4 \times O$	0.304 0.531 48.32 ne data are $\Delta G_{f,298}^{o}$ J/mol -50.66 -228.60	0.468 0.543 48.73 e given a $\times 10^{-3}$,	0.643 0.566 48.81 $c_p, J/1$ 17.44 1.117 28.85 45.36	0.578 47.61 mol K $49 + 60.4$ 47×10^{-6} $60 + 12.6$ $69 + 8.68$	0.670 44.52 449×10 T^2 0.55×10	1.000 35.12 $-3T + -3T$ $3T$		

The equilibrium constant varies with temperature as

$$lnK = \frac{4760}{T} - 1.558 \ln T + 2.22 \times 10^{-3} T - 0.29 \times 10^{-6} T^2 - 5.56$$

The steam to ethylene ratio in the initial mixture is 5.0. The equilibrium constant in terms of fugacity coefficient is 0.9419.

5C.

Define reaction coordinate, Lechatelier's principle

2