Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(*A constituent unit of MAHE, Manipal*)

FOURTH SEMESTER BTECH. (E & C) DEGREE MAKEUP EXAMINATION JULY 2022 SUBJECT: ELECTROMAGNETIC WAVES (ECE -2252)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.

Q. No.	Questions	M*	C*	A*	B *
1A.	State the Divergence theorem. Evaluate both the sides of the divergence theorem for the field $\mathbf{D} = 2xy\mathbf{a}_x + x^2\mathbf{a}_y C/m^2$ and the rectangular parallelepiped formed by the planes $x = 0$ and 1, $y = 0$ and 2, and $z = 0$ and 3. Show all intermediate steps.	4	1	1,2 ,3, 4,1 8	4
1B.	If $V = 60 \sin\theta / r^2$ V in free space and point P is located at $r=3m$, $\theta = 60^\circ$, $\phi = 25^\circ$. Determine; (i) V_P (ii) E_P (iii) $\frac{dV}{dN}$ at P (iv) $\overline{a_N}$ at P and (v) ρ_V at P.	3	1	1,2 ,3, 4,1 8	4
1C.	Four identical point charges of 4 pC each are located at the corners of a square 0.5 mm on a side in free space. How much work must be done to move one charge to a point equidistant from the other three and in the same plane?	3	1	1,2 ,3, 4,1 8	4
2A.	Two extensive homogeneous isotropic dielectrics meet on plane $z = 0$. For $z > 0$, $\varepsilon_{r1} = 4$ and for $z < 0$, $\varepsilon_{r2} = 3$. A uniform electric field $E_1 = 5a_x - 2a_y + 3a_z$ kV/m exists for $z \ge 0$. Find (i) E_2 for $z \le 0$ (ii) The angles E_1 and E_2 make with the interface (iii) The energy densities (in J/m ³) in both dielectrics (iv) The energy within a cube of side 2 m centered at (3, 4, -5)	4	1	1,2 ,3, 4,1 8	4
2B.	Transform the vector $\mathbf{A} = y\mathbf{a}_x - x\mathbf{a}_y + z\mathbf{a}_z$ into cylindrical coordinates	3	1	1,2 ,3, 4,1 8	4
2C.	 Sketch the magnitudes of voltage and current for two wavelengths, on a dissipation less two wire transmission line when: (i) Load impedance is much less than characteristic impedance (ii)Load impedance is much greater than characteristic impedance 	3	4	1,2 ,3, 4,1 8	3

	(iii) load impedance is equal to characteristic impedance				
3A.	Explain the wave propagation in good conductors using skin depth.	2	1	1,2 ,3, 4,1 8	2
3B.	Determine the boundary conditions for the magnetic field at the interface between two magnetic materials	3	2	1,2 ,4, 18	3
3C.	In phasor form the electric filed intensity of a uniform plane wave in free space is expressed as E = $(40 - j30)e^{-j20z} a_x V/m$. Find a) Angular frequency ω b) Phase constant β c) Frequency f d) Wavelength λ e) Magnetic field intensity H	5	2	1,2 ,4, 18	4
4A.	Find the amplitude of displacement current density within a large oil filled power capacitor where relative permittivity is 5 and electric filed intensity $E = 0.9 \cos [1.257 \times 10^{-6} (3 \times 10^{8} t - 2.23 z)] a_x MV/m.$	2	2	1,2 ,4, 18	4
4B.	What is the inconsistency of Ampere's law with continuity equation? Derive the modified Ampere's law by Maxwell for time varying fields.	3	2	1,2 ,4, 18	3
4C.	Derive the equations relating to the construction of smith chart and list any four salient features of smith chart.	5	4	1,2 ,3, 4,1 8	3
5A.	A transmission line has the following parameters: $R = 2\Omega/m$, $G = 0.5 \text{ mmho/m}$, $f = 1 \text{ GHz}$, $L = 8nH/m$ and $C = 0.23pF/m$. Calculate: (a) The characteristic impedance (b) Propagation constant	2	4	1,2 ,3, 4,1 8	4
5B.	With necessary equations, explain any two applications of quarter wave line at Radio frequencies	4	4	1,2 ,3, 4,1 8	3
5C.	A lossless line with characteristic impedance of 50 ohms is terminated by a impedance Z_L . The voltage standing wave maximum and minimum are found 2.5V and 1V, respectively and distance between successive minima is 5 cm. The line is first terminated by a short and then the unknown load, so that a shift in the voltage minimum of 1.25 cm is observed towards the generator. Determine the load impedance using smith chart, showing all the steps.	4	4	1,2 ,3, 4,1 8	4

M*--Marks, C*--CLO, A*--AHEP LO, B* Blooms Taxonomy Level