

IV SEMESTER B.TECH. REGULAR EXAMINATION JUNE 2022 SUBJECT: ENGINEERING MATHEMATICS IV [MAT 2254]

(COMMON TO BT/CHEM)

Date of Exam: 14-6-2022 Time of Exam: 2-5pm Max. Marks: 50

Instruction to candidates: Answer all questions

1A	Solve $x^2y'' + xy' + (x^2 - 3)y = 0$, $y(1) = 0$, $y(2) = 2$ with h=0.25.	3
1B	2 dice are thrown. Let X denote sum of the numbers showing up. Compare Chebyshev's inequality for P $(X - 7 \ge 3 \text{ with the analytical solution.}$	3
1C	Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, 0 < x < 1, 0 < y < 1, u(0, y) = 0,$ $u(x, 1) = 0, u(1, y) = 9(y - y^2), u(x, 0) = 9(x - x^2)$ with $h = \frac{1}{3}$.	4
2A	Let (X, Y) be a continuous random variable with joint probability distribution $f(x, y) = \begin{cases} e^{-(x+y)}, x \ge 0, y \ge 0\\ 0, \ elsewhere \end{cases}$ Find (i) $P(X \le Y)$ (ii) $P(X + Y \le 1)$.	3
2B	Find the Z transform of the function $sin(3n+5) + a^{n+3} + 7n^2$.	3
2C	Solve the following LPP by simplex method Maximize $Z = 4x + 10y$ Subject to $2x + y \le 50$ $2x + 5y \le 100$ $2x + 3y \le 90$ $x, y \ge 0$	4
3A	Find the inverse Z Transform of $\frac{z^2+z}{(z+2)(z^2+4)}$.	3
3B	The probability of a shooter hitting a target is $1/3$. If he fires 5	3
	times, what is the probability of his hitting the target at least twice?	

	How many times he should shoot so that the probability of hitting	
	the target at least once is more than 90%?	
3C	In an examination marks scored by the students follow the normal distribution. It is known that a student passes the examination if he secures 40% or more marks. He is placed in first, second and third division if he secures 60% or more, between 50% and 60% and between 40% and 50% respectively. He gets a distinction if he gets 70% or more marks. It is given that 10% of the students have failed in the examination and 5% of them obtained distinction. Find the percentage of students getting second division.	4
4A	Two independent random variables X and Y have mean values 5 and 10 and variance 4 and 9. Find the covariance between $U=3X+4Y$ and $V=3X-Y$.	3
4B	In a partially destroyed laboratory record, only the lines of regression of y on x and x on y are available as 4x-5y+33=0 and 20x-9y=107 respectively. Calculate (i) mean values of x and y (ii) the correlation coefficient between x and y.	3
4C	Solve the following LPP by graphical method	4
	Maximize $Z = 3x + 2y$ Subject to $-2x + y \le 10$ $x + y \le 3$ $x \le 2$ $x, y \ge 0$	
5A	Solve the difference equation $y_{n+1} - 3y_n = 3^n(n+2)$.	3
5B	The chance that a doctor A diagnose a disease correctly is 60%. Chance that a patient of A die after proper diagnosis is 40%. Chance that patient of A will die after wrong diagnosis is 70%. If patient of A dies, what is the probability that his disease was correctly diagnosed?	3
5C	Solve $u_t = \frac{1}{16}u_{xx}$, $0 < x < 1, t > 0, u(x, 0) = 100 \sin \pi x$, u(0, t)=u(1, t)=0. Compute $u(x, t)$ for one-time step using	4
	Crank Nicolson method, taking $h=\frac{1}{4}$.	