Question Paper

Exam Date & Time: 25-Jul-2022 (02:00 PM - 05:00 PM)

C)

and y(1)=1 can be extremized.

MANIPAL ACADEMY OF HIGHER EDUCATION

IV SEMESTER B. TECH END SEMESTER MAKE-UP EXAMINATIONS, JULY 2022

ENGINEERING MATHEMATICS IV [MAT 2255]

Marks: 50 Duration: 180 mins.

DESCRIPTIVE TYPE

Answer all the questions. Section Duration: 180 mins 1) (4)Solve xy'' + y = 0 subject to the conditions y(1) = 1, y(2) = 2 by taking h = 0.25 by finite difference method. A) B) (3)Let \bar{X} be the mean of a random sample of size 100 from a distribution which is $\chi^2(50)$. Compute an approximate value of $P(49 < \overline{X} < 51)$ using central limit theorem. C) (3)Find the extremum of the functional $\int_{x_0}^{x_1} \{y' + x^2(y')^2\} dx$ (4) 2) Let \bar{X} be the random sample of size 6 from a normal distribution N(0,125). Find C, so that $P\{\overline{X} < C\} = 0.9$. Also, find $P\{33.542 < S^2 < 55.625\}$. A) B) (3)Suppose that X is a random variable with pdf given by f(x) = 2x, $0 \le x \le 1$. Find the pdf of $Y = 8X^3$. C) (3)Suppose that X is uniformly distributed over (-a, a) where a > 0. Whenever possible determine 'a' so that the following conditions are satisfied. a) $P(x > 1) = \frac{1}{3}$ b) $P(x < \frac{1}{2}) = 0.7$ (4)3) Solve using simplex method. A) Maximize $Z = 5x_1 + 3x_2$ subject to $x_1 + x_2 \le 2$, $5x_1 + 2x_2 \le 10$, $3x_1 + 8x_2 \le 12, x_1, x_2 \ge 0$ B) (3)Derive the mean and variance of exponential distribution.

. Find the curves on which the functional $\int_0^1 ((y')^2 + 12xy) dx$ with y(0)=0

(3)

Show that for the normal distribution with mean μ and variance σ^2 ,

A)
$$E[(X - \mu)^{2n}] = 1.3.5 \dots (2n - 1)\sigma^{2n}$$
.

- Solve using Graphical method. Maximize $Z=8x_1+5x_2$ subject to $2x_1+x_2\leq 500$, $x_1\leq 50$, $x_2\leq 250$ $x_1,x_2\geq 0$.
- Let X and Y be two independent random variables with pdf's $f(x) = e^{-x}, x > 0, g(y) = 2e^{-2y}, y > 0 \text{ . Find the pdf of the random}$ variable Z = X + Y .
- Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, t > 0 with the boundary conditions u(0, t) = 0, u(4, t) = 0, $u(x, 0) = \frac{x}{3}(16 x^2)$. Obtain $u_{i,j}$ for one time step with h = 1, $\lambda = 1$, using Crank-Nicolson method.
 - In a consignment of electric lamps 5% are defective. If a random sample of 8 lamps are inspected, what is the probability that one or more lamps are defective.

C) Solve the transportation problem.

					-	
Destination						
	A	В	C	D		
Source I	11	13	17	14	250	
Source II	16	18	14	10	300	Availability
Source III	21	24	13	10	400	
Requirement	200	225	2.75	250		

----End-----

(3)