

DEPARTMENT OF MECHATRONICS

IV SEMESTER B.TECH. (MECHATRONICS ENGINEERING)

END SEMESTER [JUNE 2022]

SUBJECT: LINEAR CONTROL THEORY [MTE 2253]

DATE & TIME: 16-06-2022, 9am-12pm

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Data not provided may be assumed and justified.

Q.		Μ	CO	Р	LO	BL
No				0		
1A	Determine the transfer function for the Signal flow graph shown in Fig. 1A.	5	1	1	1	3
	Also, mention the steps.					
	H ₂ H ₃					
	R(s) Q Y(s)					
	G5 G6 G7 G8					
	H ₆ H ₇					
	Fig. 1A					
1B	Determine the transfer function of a system described by	2	1	1	1	3
	$2\frac{dc(t)}{dt} + c(t) = r(t-2)$, where r(t) and c(t) are the input and output					
	respectively.					
1C	Determine the transfer function of the electrical circuit shown in Fig. 1C	3	1	1	1	3
	$\downarrow \qquad i \qquad \downarrow \qquad $					
	Fig. 1C					

2A	Write equations of motion for Fig. 2A. through Inspection method.	2	1	1	1	3
	$\begin{array}{c} I(t) \ \theta_1(t) \\ \hline D_1 \\ \hline D_1 \\ \hline Fig. 2A \end{array} \qquad $	_				
2B	Sketch the Bode plot for the transfer function $G(s) = \frac{100}{s(1+s)(1+0.5s)}$.	5	4	1	1	3
2C	For a unity feedback system whose open-loop transfer function is	3	2	1	1	3
	$G(s) = \frac{50}{(1+0.1s)(1+2s)}$, determine the Position, Velocity and Acceleration error constants.					
3 A	A feedback control system is described by Open loop system	4	4	1	1	3
	$G(s) = \frac{10}{s(1+0.2s)(1+0.01s)}; H(s) = 1$ Determine: a) Gain cross-over, Phase cross-over frequency b) Gain margin, and phase margin					
3B	Convert the Differential equation given below into State Space Model:	4	4	1	1	3
	$\frac{d^3y}{dt^3} + 9\frac{d^2y}{dt^2} + 26\frac{dy}{dt} + 24y = 24 u$					
3 C	State any two differences between a Lag compensator and a Lead compensator.	2	3	1	1	3
4A	Determine the value of K and <i>a</i> to satisfy the frequency domain specifications; $M_r = 1.04$, and $\omega_r = 11.55$ rad/sec, for the system shown IN Fig.4A. $\frac{R(s) + K}{S(s+a)} = \frac{C(s)}{Fig. 4A}$	3	3	1	1	3
4B	Determine the stability of the Closed-loop system using RH–criterion, the characteristic equation of the system is $3s^4 + 10s^3 + 5s^2 + 5s + 2 = 0$	2	2	1	1	3
		_	-			
4 C	Sketch the Root locus of control system having open-loop transfer function	5	3	1	1	3

	$G(s)H(s) = \frac{K}{83.33 (s+0.001)(s+2)(s+6)}$					
5 A	Convert the State Space model given below into Differential equation:	2	4	1	1	3
	$\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \\ \dot{X}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -5 & 7 & -3 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} U$ $Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$					
5B	Draw the electronics circuit of PID Controller, and derive its final control	5	4	1	1	3
	law in terms of error.					
5C	Find the steady state error of First order system with Integral mode subjected to Unit Step signal. Also, mention the characteristics of PD controller.	3	4	1	1	3