Reg. No					

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

VI SEMESTER B.TECH. EXTERNAL EXAMINATIONS MAY 2022 SUBJECT: MICROBIAL TREATMENT OF WASTEWATER [BIO 4053]

Instructions to Candidates:

✤ Answer ALL the questions & missing data may be suitable assumed

Q.NO					Ma rk	со	BTL
	wastewater for for a divalent needed to sati	e activity coefficients for t r the data given below. Usin ion, estimate the equilibriun sfy the solubility product for the solubility product constan	ng the value n concentrat · calcium car	of the activity coefficient ion of calcium in solution bonate (CaCO ₃) at 25°C.	_	1	_
1A.	Cation	Concentration(ppm)	Anion	Concentration(ppm)	4		4
	Ca ²⁺	29.9	HCO₃ [−]	167.0			
1A. 1B. 1B. 1B. 1 1B. 1 1 1 1 1 1 1 1 1 1 1 1 1	Mg ²⁺	139.8	SO4 ²⁻	78.0			
	Na⁺	349.8	Cl⁻	46.0			
	K+	410.4	NO ₃ -	128.4			
1B.	headworks to a a sample size solids, suspen total volatile di were all either Tare mass of e Mass of evapo Mass of evapo Tare mass of Mass	test results were obtained f a wastewater treatment plan of 50 mL. Determine the cor ided solids, volatile suspen- issolved solids in mg/L. The , dried, or ignited to constan evaporating dish = 53.5433 orating dish plus residue after orating dish plus residue after Whatman GF/C filter and residue man GF/C filter and residue	t. All of the tencentration of ded solids, the samples us tweight g er evaporation ar ignition at side after dry after drying	ests were performed using of total solids, total volatile total dissolved solids and sed in the solids analyses on at $105^{\circ}C = 53.5794$ g $550^{\circ}C = 53.5625$ g ying at $105^{\circ}C = 1.5433$ g at $105^{\circ}C = 1.5554$ g	4	1	3
1C.	Discuss the ir environment.	nfluence and impact of em	erging pollu	itants in wastewater and	2	1	3
2A.	If a ground w concentration	vater contains H_2S at con of H_2S in head space of a clo ven that for H_2S , Henry's co	osed tank co	ntaining the ground water	2	1	4
2B.	 20°C. The time profile of BOD of a sample collected from a wastewater treatment plant. a. Calculate the ultimate BOD (Lo)? b. What is the five-day BOD? c. What is Lt for 7 days? 					2	3

	$(\mathbf{T}_{\mathbf{M}}) = (\mathbf{T}_{\mathbf{M}}) = (\mathbf{T}_{\mathbf{M}}$				
2C.	<i>Time (a)</i> 2 4 0 8 10				
	BOD (mg/L) 11 18 22 24 26				
3A.	Explain the Most probable number analysis for the quantification of total coliform bacteria using presumptive, confirmed, and completed test.	3	3	3	
3B.	toxicity test data obtained using flathead minnows. Concentration of No. of Test No. of Test animals dead after waste, % by volume animals 48 h 96h 60 20 16 20 40 20 12 18 20 20 8 16 10 20 4 12 5 20 0 6 2 20 0 2	4	3	4	
3C.	A municipal wastewater treatment plant is discharging secondary effluent into a river. The dilution received at the boundary of the mixing zone at minimum 3-year dry weather flow condition is 48:1. Acute and chronic toxicity tests were conducted on three freshwater species to eliminate the effect of sensitivities of test species to the plant effluent. The acute toxicity were conducted over a 96 hours period (control survival is 100% and the LC50 was found to be 7.3). The chronic end point observed for 10 days (control survival is 100% and NOEC is 1.1). Determine the toxicity compliance				
4A.	Determine the rise in temperature for the aerobic stabilization of raw sewage sludge, if the initial dry matter content is around 36 g/L (average organic dry matter content of sewage sludge) and the biodegradability of 50% within the residence time in the sludge reactor.	`3	4	3	
4B.	Illustrate and discuss the steps involved in anaerobic degradation of carbohydrate and protein.	3	4	2	
4C.	For glutamine ($C_5H_7NO_2$), use the Buswell equation and determine theoretically: a) the gas composition (% carbon dioxide and % methane) produced and b) the volume of methane produced from 1 kg of the biomolecules at NTP.	4	4	3	
5A.	Explain the simultaneous nitrification-denitrification process used in the wastewater treatment plant	3	5	2	
5B.	List the design criteria and dimensions of the UASB reactor	4	5	2	
5C.	Compare and contrast the different anaerobic attached film reactor used for treating the wastewater.	3	5	2	
	CO: Course Outcome; BLOOM TAXONOMY LEVEL: 1-Remember, 2-Understand, 3-Apply, 4-Analyze, 5-Evaluation	ate, 6-Cre	eate		