Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

VI SEMESTER B.TECH (CIVIL) END SEMESTER EXAMINATIONS MAY- 2022

SUBJECT: DESIGN OF STEEL STRUCTURES [CIE 4064]

Date of Exam:

Time of Exam:

Max. Marks: 50

Instructions to Candidates:

- ✤ Answer ALL the questions & missing data may be suitably assumed
- ✤ IS 800 and SP-6 is Permitted to Use. Use Fe410 gade steel with
 - fy=250N/mm²

1	Determine shear resistance corresponding to web buckling (V_{tf}) using tension field method. Stiffeners are provided at 2000mm c/c and	CO1	03
	V_{cr} =506kN. Mz = 4275 kN-m and Vz =8777.5 kN. Flange size 450x35		
	v_{cr} = 500km. MZ = 4275 km - m and vZ = 8777.5 km. Finange size 450x55 mm and web 12x1200mm.		
2		CO1	05
2	Check the buckling resistance of intermediate stiffener 10x160mm size.	CO1	05
	Given factored shear=588kN; Vcr=469.8kN; spacing of the		
	stiffeners=2000mm, web plate size 12x1200mm.		
3	Derive the expression for the economical depth of the welded plate girder.	CO2	02
	Assume moment is carried by the flanges only.		
4	Check the gantry girder section for fatigue strength. Use following data.	CO2	03
	Crane operates for 225 days /year. Working hours = 8 hrs /day .		
	Max. no. of trips/ $hr = 3$. Design life = 50 years. Section modulus		
	Zez=3764.98x10 ³ mm ³ , web size 7.6x600 mm, Mu=676.6kN-m and		
	Vu=337.34 kN.		
5	Check the overall buckling strength of ISWB225@332.56 N/m of I-		
	section column subjected to factored axial tension $Tu = 450$ kN and Mz at	CO3	03
	top 35 kN-m and Mz at bottom 20 kN-m. Assume section is plastic.		
6	Design a moment resisting welded connection to transfer a moment of		
	60kN-m from an ISLB 500 to a column ISHB 300@577N/m. Explain	CO4	05
	how the transfer of 120kN shear can be loaded in the same conneon:		
7	Draw the typical sketches to show the following beam column welded		
	connection; state when do you prefer those connections :	CO4	04
	a) Unstiffened seated connection.		
	b) Stiffened seated connection.		
8	Draw a neat sketch of cross section of composite bridge having following		
	components :		
	Thickness of the slab = 300 mm	a c -	0.5
	Road width (including foot path) = 8 mts	CO5	03
	Span of the bridge $= 18$ mts		
	Spacing of welded I steel girders $= 2.2$ mts		
	Shear connectors 16dia- 2nos at 240 c/c		

9	Design the shear connectors used in composite bridge to transfer a		
	vertical shear of 650 kN.		
	Given: Spacing of girders 2.2mc/c		
	Thickness of the slab 350mm and M25 Grade concrete	CO5	05
	Flange thickness(35x450)mm		
	Web size(10x1200)mm		
	CG of the composite section is at a distance 215.5mm from the top of		
	RCC slab. Assume 20mm Diameter steel connectors.		
10	What are the disadvantages of light gage steel structures:	CO5	02
10	Discuss local buckling of thin elements and write the equation to	CO5	02
11		COS	05
10	calculate critical plate stresses in compression.	004	05
12	Determine the design capacity of a steel purlin ISMC150 in bending and	CO4	05
	shear subjected to factored $M_{z=8.7}$ kN-m, $M_y = 0.87$ kN-m , Fz=6.55 kN		
	Fy=0.69kN.		
13	Determine the design bending moment and shear force of a Roof truss	CO4	
	steel Purlin ISMC150.		
	Given weight of the AC sheets $=180$ N/m ²		03
	Live load =750 N/m ²		00
	Wind load in X direction=1.8kN/m		
	Span of the truss= 36mts		
	Slope theta-7 degree		
	Spacing of the purlin =1.6mts		
	Truss spacing S=4.5mts.		
	With neat sketches explainCO	5	04
14	a. Un stiffened compression Element.		
	b. Effective design width. In the case of light gauge steel.		