



## VI SEMESTER BTECH. (E & C) DEGREE END SEMESTER EXAMINATION **JULY 2022 SUBJECT: WIRELESS COMMUNICATION (ECE -3252)**

## **TIME: 3 HOURS**

MAX. MARKS: 50

## Instructions to candidates

- Answer ALL questions. •
- Missing data may be suitably assumed. •

| 1A. | From the fundamentals, derive an expression for critical distance in two ray model. Determine the critical distance for an indoor microcell having $h_t$ = 3m and $h_r$ = 2m. Operating frequency is 2GHz                                                                                                           |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1B. | Consider an indoor wireless LAN with $fc = 900$ MHz, cells of radius 10 m, and omnidirectional antennas. For free space path loss model, what should be the transmitted power if all receivers within the cell are to receive a minimum power of 10 $\mu$ W?. How does this change if the system frequency is 5GHz? |
| 1C. | Obtain an expression for Doppler shift with geometry associated with it                                                                                                                                                                                                                                             |
|     | (5+3+2)                                                                                                                                                                                                                                                                                                             |
| 2A. | From the fundamentals obtain the expression for cell coverage area assuming a circular cell.                                                                                                                                                                                                                        |
| 2B. | A fading channel shows an impulse response with peaks at relative power and time having                                                                                                                                                                                                                             |
|     | the following values: -15 dB at 1 $\mu$ S, 0 dB at 10 $\mu$ S, -25 dB at 18 $\mu$ S, -10 dB at 25 $\mu$ S.                                                                                                                                                                                                          |
|     | Determine a) Average delay spread b) RMS delay spread                                                                                                                                                                                                                                                               |
| 2C. | With neat diagrams, explain power delay profile and coherence bandwidth                                                                                                                                                                                                                                             |
|     | (5+3+2)                                                                                                                                                                                                                                                                                                             |
| 3A. | Derive an expression for optimal power allocation and Shannon capacity of a wireless channel when CSI is available at both transmitter and receiver.                                                                                                                                                                |
|     | Consider a time invariant frequency selective block fading channel that has four subchannels                                                                                                                                                                                                                        |
| 3B  | of bandwidth B=10MHz. The frequency responses associated with each subchannel are                                                                                                                                                                                                                                   |
| JD. | $H_1=1$ , $H_2=0.5$ , $H_3=2$ and $H_4=0.25$ respectively. The transmit power constraint is $P=10mW$                                                                                                                                                                                                                |
|     | and noise PSD $N_0/2$ has $N_0=0.001 \mu W/Hz$ . Find the Shannon capacity of this channel                                                                                                                                                                                                                          |
| 3C. | How Doppler spread and ISI affects symbol error probability in fading channels?                                                                                                                                                                                                                                     |
|     | (5+3+2)                                                                                                                                                                                                                                                                                                             |
| 4A. | For a flat fading channel the received SNR is a random variable taking on values 30dB, 20dB, 10dB and 0dB with probabilities 0.2, 0.3, 0.3 and 0.2 respectively. Assume that both                                                                                                                                   |

|     | channel inversion power adaptation policy and associated zero outage capacity per unit                                                                    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | bandwidth of this channel.                                                                                                                                |
| 4B. | Derive an expression for the average probability of error, for BFSK in a Rayleigh fading channel                                                          |
| 4C. | Binary data are transmitted over microwave link with average SNR=6.9696 dB. Compute the probability of error for DPSK in AWGN and Rayleigh fading channel |
|     | (5+3+2)                                                                                                                                                   |
| 5 ^ | Explain the various diversity combining techniques used in receiver diversity systems and                                                                 |
| JA. | show how selection combining improves outage performance for channel with 4 branches.                                                                     |
| 5B  | With relevant diagrams, explain the Alamouti scheme of transmitter diversity in the absence                                                               |
|     | of CSI at transmitter                                                                                                                                     |
| 5C. | With a neat block diagram, explain decision feedback equalizer.                                                                                           |
|     | (5+3+2)                                                                                                                                                   |