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Answer all the questions.

Instructions to Candidates: Answer ALL questions Missing data may be suitably assumed

1) )

. Suppose you are given a dataset {(x'"),y):i = 1....,m} consisting of m independent
examples, where #(! € B™ are n-dimensional vectors, and y'!! £ {0,1}. You will model
the joint distribution of (z,y) according to:

ply) = ¢*(1 — &)' ™

1
5 : = .
ploly=0) = —(2 =TI exp ( —(z — ;.m} = (x ;.LD})

MI'—‘ MI'—‘

1
P{-f—'|y=l)=WﬂP( —(z — pu1)"E I(I—Pl))

Here, the parameters of the model are ¢, X, pp and gy, We claim that the maximum
likelihood estimates of the parameters pg and ¥ are given by

i Iy = 0}
TG0
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The log-likelihood of the data is given by

Ho =

U, o, 11, 22) = log [ [ o=, 4'"; &, po, 11, E)

= log [ [ (=" 15"; pto, 11, E)p(y"; )
i=1

By maximizing [ with respect to the parameters pp and X, show that the maximum
likelihood estimates of pp and X are indeed as given in the above formulas.

What do you understand by the term XOR problem? Consider the data set given in Table
Q).1B for designing a SVM whose inner product kernel is given by

K(x,X;) = (14 x7x;)?
Compute the value of Lagrange multipliers for your machine.

Table: Q.1B

Input Vector, X Desired Response, y

., =
R +1
(41, —1 +1
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C)

(+1,4+1) -

Define a Markov Decision Process (MDP).

Consider Cocktail Party Problem (CPP), wherein sources are modeled by a random vari-

@

n able s € R", which is drawn according to some density ps(s). Now let another random
variable be defined according to r = As, where » € R" and A € R"". Here, matrix A is
known as mixing matrix, and in order to find the sources we need to compute unmixing
matrix W = A~ we can also write the observed variable as * = W~'s. The density of

C)

observed variable  can be written as

pio) = [T putwto)w
i=1

.

where p(s) = ¢’(s) and g is a sigmodal function, which is defined as

1
§) = ——.
9(s) 1+e
The square matrix W is parameter in the model. Given a training set {x(‘}; i=1,...,m}
the likelihood function is given by
T
L) =[] p(z?).
i=1
Using maximum-likelihood estimate to derive the expression for W.
@)
Consider a Markov model with given set of states S = {s;,8,,... , 8 5!}, wherein we can

choose a series over time 7 € S7T.

i) State two Markov assumptions that will allow you to tractably reason about time

series.
ii) Derive a relation to compute the probability of a state sequence, P(Z2).

iii) Assume that the transition matrix from a weather system is given by

S0 Seun Seloud Srain

S0 0 04 05 0.1

A— Ssun 0 05 0.2 0.3
Saouda |0 0.2 06 0.2

Syain LO 0.1 07 02

Compute the probability for sequence of observation

2= {31 = Ssun, 22 = Scloud, 23 = Scoud, 24 = Srain, 25 = Scrioud}-

Comnsider the Poisson distribution parameterized by A:

()
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C)

e NV
p(y:A) = i

Show that the Poisson distribution is in the exponential family, and clearly state what
are b(y),n,T(y) and a(n).

(6)
The EM algorithm is given by
Repeat until convergence{
(E-step) For each i, set

Q:(2") := p(2"|z?; 6)
(M-step) Set
p(l,(f)__z(z) 6)
f := argmax Q:(2'9) log _
22 Q=)

} - i
Now consider the Gaussian mixture model with p(z®, 2) = p(2®|2@)p(2?), where
@20 ~ N (p;,%;) and p(2® = j) = ¢;. Apply EM algorithm to fit the parameters ¢
and p for the Gaussian mixture model.
Counsider a learning problem in which you have a finite hypothesis class H = {hy,. .., b} @)

consisting of k hypothesis. Show that if uniform convergence occur, the generalization
error of h i1s at most 2 worse than the best possible hypothesis in H.

Given a training set {(z®,y@)|i = 1,...,m}, where (9 € R™ and n, is the number of @
words in the i-th training example. The likelihood of the data is given by

T m
L(&, drjy=0, Orjy=1) = H (HP(R’-?”!}; Dkjy=0, f.fﬂkiyzi}) p(y"™; dy).

i=1 \j=1

Maximizing L(®, Ogjy—o, Orjy=1) yields the maximum likelihood estimates of the parame-

ters: | , |
& _ Zz’:l Zj;l 1{1} =R ym = l[}}
“Ek|ly=0 Z?ll l{y{i} — O}T?,I-
& 20 Z:il Z??ﬂ 1{'-1'?} =kAyd = 1}
HRly=1 2111 1{y{f} = l}nz-
foo) o Zzn:l 1{14'{1} = 1}
Py = - .

Apply Laplace smoothing to the above parameters and re-write those parameters.

(5)
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Consider a classification problem in which the response variable y can take on any one of
the k values, soy € {1,2,...,k}. Derive a Generalized Linear Model (GLM) for modeling
this type of multinomial data.

®  Consider a binary classification problem with y € {0,1}. Is it advisable to use classical @
linear regression for this problem? Given a logistic regression model, derive least square
regression using maximum likelihood estimate under the following set of probabilistic
assumptions:
p(y = 1|z;8) = he(z)
ply =0|z;0) =1 — hy(z).
Here 6 and hy have their usual meaning.
© Given an unlabeled set of examples {zM, 22, ... (™1} certain SVM algorithm tries to @

find a direction w that maximally separates the data from the origin. Precisely, it solves
the primal optimization problem:

| 2

o 1
minimize §Hw

subject to

wiz® >1 i=1 m

P

A query example z is labeled 1 if w2z > 1, and 0 otherwise. Derive the corresponding
dual optimization problem. Note that dual optimization problem should be free from w.

Suppose, there are a finite set of models M = {M;, ..., My}, and you are trying to select ©

» one among them, which describes the behavior of your data. How will you select your
model so that the empirical error is minimal? Describe various techniques for model
selection.

B) Show that PCA is a variance maximizing problem. (3)

C) Starting with basic definition of a convex function derive the relation for Jensen's inequality. 2)
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