Exam Date & Time: 18-Jul-2022 (09:00 AM - 12:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

VI Semester End Semester Makeup Examination

APPLIED LINEAR ALGEBRA [MAT 5302]

Marks: 50	Duration: 180	mins.
	Descriptive Questions	
Answer all (1)	he questions. Section Duration: 180 Show that the representation of any vectors in terms of a set of basis of vectors is	mins
-)	unique.	(3)
A)		
B)	In the vector space \mathbb{R}^3 express the vector (1, -2, 5) as a linear combination of the vectors (1, 1, 1), (1, 2, 3) and (2, -1, 1).	(3)
C)	Solve the following system of equations	
	$2x_1 - 3x_2 - 6x_3 - 5x_4 + 2x_5 = 7$	
	$x_3 + 3x_4 - 7x_5 = 6$	(4)
	$x_4 - 2x_5 = 1$	
2)	Let W be the subspace of \mathbb{R}^4 generated by {(1, -2, 5, -3), (2, 3, 1, -4), (3, 8, -3, -5)}. Then find the basis of W and extend the basis of W to a basis of \mathbb{R}^4 .	(3)
A) B)	Find a linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ whose image is generated by $(1, 0, -1)$ and $(1, 2, 2)$.	(3)
C)	Let $F:\mathbb{R}^3 \to \mathbb{R}^3$ be a linear map defined as $F(x, y, z)=(x+2y-z, y+z, x+y-2z)$. Then find a basis and dimension of the i). Kernel of F ii). Image of F.	(4)
3)	Let V be an inner product space and W is a subset of V. Then show that	
	$W^{T} = \{x \in V \le x, w \ge 0 \text{ forall } w \in W\}$ is a vector subspace of V.	(3)
A) D)		
в)	Let x, y $\in \mathbb{R}^2$, where x=(x ₁ , x ₂), y=(y ₁ , y ₂), < x, y>=y ₁ (x ₁ +2x ₂)+y ₂ (2x ₁ +5x ₂). Is < x, y> defines an inner product on \mathbb{R}^2 ? Verify? .	(3)

- C) Let $T: \mathbb{R}^2 \to \mathbb{R}^4$ be a linear map defined as T(x, y)=(x, y, x+y, x-y). Then find the matrix corresponding to T relative to the ordered bases $\{(1, 0), (0, 1)\}$ and $\{(1,0,0,0), (0,1,0,0), (0,0,0,1)\}$ of \mathbb{R}^2 and \mathbb{R}^4 respectively. (4)
- 4) Using LU decomposition, solve the following equations
 - A) $x_{1}+2x_{2}+4x_{3}=3$ $3x_{1}+8x_{2}+14x_{3}=13$ (3)

 $2x_1+6x_2+13x_3=4$.

B)
Find the minimal polynomial of
$$\begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}.$$
(3)

C)
Find the singular value decomposition
$$U\Sigma V^{T}$$
 of the matrix $\begin{bmatrix} 1 & -1 \\ 1 & -1 \\ \sqrt{3} & 0 \end{bmatrix}$. (4)

5) Solve the following system of linear equations by using eigen values

 $dx_1/dt=4x_1+2x_2$ and $dx_2/dt=-x_1+x_2$ with initial conditions $x_1(0)=1$ and $x_2(0)=0$. (3)

- A)
- B) $\begin{bmatrix} 2 & -2 & 1 \\ -1 & 3 & -1 \\ 2 & -4 & 3 \end{bmatrix}$, if possible. (3)
- C) Apply the Gram-Schmidt orthogonalization process to find an orthonormal basis for the subspace U of \mathbb{R}^4 spanned by (1, 1, 1, 1), (1, 2, 4, 5) and (1, -3, -4, -2). (4)

-----End-----