

VI SEMESTER B.TECH. END SEMESTER EXAMINATION MAY 2022

SUBJECT: DATABASE MANAGEMENT SYSTEMS [MTE 4055]

Date of Exam: 19/05/2022 Time of Exam: 10:00 AM – 1:00 PM Max. Marks: 50

Instructions to Candidates:

✤ Answer ALL the questions & missing data may be suitable assumed

Q.N 0.	QUESTION	М	СО	РО	LO	BL
1.	Association rule mining often generates a large number of rules. Discuss one effective method that can be used to reduce the number of rules generated while still preserving most of the interesting rules.	2	4	1, 2, 3	1, 2, 3	Discu ss
2.	Consider the market basket of transactions shown below. For a minimum support of 40% perform the Apriori algorithm to find the most frequent item set. Suppose that frequent item sets are saved for a large transaction database, <i>DB</i> . Discuss how to efficiently mine the (global) association rules under the same minimum support threshold if a set of new transactions, denoted as ΔDB , is (incrementally) added in.	3	4	1, 2, 3	1, 2, 3	Discu ss
3.	Construct a decision-tree classifier with binary splits at each node, using tuples in relation r (A , B , C) shown below as training data; attribute C denotes the class. Show the final tree, and with each node show the best split for each attribute along with its information gain value. (1, 2, a), (2, 1, a), (2, 5, b), (3, 3, b), (3, 6, b), (4, 5, b), (5, 5, c), (6, 3, b), (6, 7, c).	5	5	1, 2, 3	1, 2, 3	Cons truct

association ru rule are indep positive impa	lle. Infer who bendent of e cts on each o	ach other or ha other.	in the association ve negative or	on					
Note: CID = CI {10} → {50,70		and TID = Transa	actions ID						
CID	TID	Date	Items Purchased						
1	1	01/01/200	10, 20						
1	2	01/02/200	10, 30, 50, 70				1 2	1 3	
1	3	01/03/200	10, 20, 30, 40		2	4	1, 2, 3	1, 2, 3	u U
2	4	01/03/200	20, 30						
2	5	01/04/200	20, 40, 70						
3	6	01/04/200	10, 30, 60, 70						
3	7	01/05/200	10, 50, 70						
4	8	01/05/200	10, 20, 30						
4	9	01/06/200	20, 40, 60						
5	10	01/11/200	10, 20, 30, 60						
Let the follow	ing relation	al schemas be g	iven:						
	R = (A, A)	B,C);S=(D,R)	E,F)						
		-	velop an express valent to each o		3	2	1, 2, 3	1, 2, 3	D

	b) $\sigma_{B=17}(r)$)								
	c) $\Pi_{A,F}(\sigma_C)$									
6.	Design a da keep track status, seat and routing diagram, a including p	5	2	1, 2, 3	1, 2, 3	Desig n				
7.	Consider th	ne relational sc	hema of F	igure.						
	Develop ar following q a) List the Bank Corpo	2	3	1, 2, 3	1, 2, 3	Devel op				
		names of all or all o	employee	es managed by	' Mark					
8.	Zuckerber		employee	es managed by	⁷ Mark					
8.	Zuckerber	g <mark>.</mark>	salary	es managed by dept_name	building					
8.	Zuckerber Consider for ID 22222 12121 32343 45565 98345 76766 10101 58583 83821 15151 33456 76543 Explain two	g. ollowing Table. <i>name</i> Einstein Wu El Said Katz Kim Crick Srinivasan Califieri Brandt Mozart Gold Singh	salary 95000 90000 60000 75000 80000 72000 65000 65000 62000 92000 40000 87000 80000		building Watson Painter Painter Taylor Taylor Watson Taylor Painter Taylor Painter Taylor Painter Taylor Painter Taylor Painter Taylor Painter	3	4	1, 2, 3	1, 2, 3	Sugg est

	branch(<u>b</u> customer loan (<u>loa</u> borrower account depositor									
	select T.bra	nch_name								
	from branch	n T, branch S								
	where T.assest > S. assests and S. branch_city = 'Brooklyn'									
	-		elational algo Justify your c	ebra expression choice	that is					
10.	-	e distinction ey and super	-	ne terms prima	ary key,	2	3	1, 2, 3	1, 2, 3	Expl ain
11.	For the set of transactions shown in Table, find the most frequent item set with a minimum support of 3 using the FP Growth algorithm.									
	Transacti ons									
	1	Fries, A	Fries, Apples, Coconuts, Dates, Guavas, Mangoes, Pineapples					1, 2, 3	1, 2, 3	Find
	2	Apples, 1	Apples, Bananas, Coconuts, Fries, Lychees, Mangoes, Oranges							
	3	Ban	Bananas, Fries, Hotdogs, Oranges							
	4	Banana	Bananas, Kitkats, Coconuts, Pineapples							
	5 Apples, Fries, Coconuts, Lychees, Pineapples, Mangoes, Nuts									
12.	Elaborate or examples.	Elaborate on the ACID properties of transactions with suitable examples.						1, 2, 3	1, 2, 3	Elab orate
13.	Break down the table shown in the table into Second Normal form. Differentiate between Third Normal form and Boyce Codd Normal Form.					2	4	1, 2,	1, 2,	Diffe renti
	Cu	istomer ID	Store ID	Purchase Location		-	4	3	3	ate
		1	1	Los Angeles						

		1	3	San Francisco						
		2	1	Los Angeles						
		3	2	New York						
		4	3	San Francisco						
14.	Define \	L Weak Entity set. [Describe by us	 ing suitable illus [:]	trations.	3	4	1, 2, 3	1, 2, 3	Defin e
15.	SQL que i. List a ii. List t coun iii. List t iv. Get c v. List a	hress L written_by book numb book numb	wing: a alphabetical stomers in each nore custome Sweden. comer named ith names that publisher tante publisher transport	order. ch country. Only rs. 'Thomas Cook'. at start with 'Ca'.	include	5	3	3	3	e