Question Paper

Exam Date & Time: 09-Jul-2022 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES IV SEMESTER B.Sc.(Applied Sciences) in Engg. END SEMESTER THEORY EXAMINATION-MAY/JUNE 2022 SIGNALS AND SIGNAL PROCESSING [IEE 241]

Marks: 50 Duration: 180 mins.

Plot the DT signal $y[n] = 1 + \delta[n]$; for all 'n'. Express y[n] in terms of

Find and sketch the odd and even components of the CT signal

Answer all the questions.

1)

A) B)

Missing data may be suitably assumed.
Use of formula/transform table is permitted.

step functions.

 $x(t) = \sin(100\pi t) u(t)$ C) Test for linearity, time-invariance, causality, and stability (4) properties for the DT system described by $y[n] = \sum_{i=1}^{\infty} (x[n])^k$ 2) (5) A system is formed by connecting two sub-systems in cascade. The impulse responses of the sub-systems are given by $h_1(t) =$ A) $e^{-2t}u(t)$ and $h_2(t) = 2e^{-t}u(t)$. Find the overall impulse response h(t) of the system. Also, determine if the system is stable and causal. B) (5) Consider the cascade of DT-LTI systems with impulse responses $h_1[n]$ and $h_2[n]$, respectively. Find $h_1[n]$ if $h_2[n] = \{1, -1\}$ and if the input is $x[n] = \{1, 1\}$, with an output of $y[n] = \{2, 1, 0, -1, -2\}$. Note: Bold and underlined number represents the sample at n = 0. 3) (2) What is the eigen function of CT-LTI systems? Prove it. A) B) (5)

(2)

(4)