

## II SEMESTER M.TECH (INDUSTRIAL BIOTECHNOLOGY) END-SEMESTER EXAMINATION, 01/07/22 (02:00-05:00PM) SUBJECT: Design and Development of Biological Treatment Processes (BIO 5004) REVISED CREDIT SYSTEM

## ANSWER ALL QUESTIONS

TIME: 3 HOURS

Q.

NO

**1A** 

**1B** 

10

MARKS CO BTL QUESTION Present a comparative analysis of the carbon flow during aerobic degradation in an activated sludge system and the carbon flow during anaerobic degradation. 3 1 4 You may appropriately assume the partition of carbon towards energy expenditure and biomass production. Give an account of the enzymes used for the metabolism of celluloses by 3 1 2 aerobic and anaerobic microorganisms, with examples for both. What is the characteristic feature that is similar to oxygen and nitrate

MAX. MARKS: 50

| 1C | respiration? Explain the step-wise sequence in which denitrification proceeds.                                                                                                                                                                                                                                           | 4 | 1 | 3 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|
| 2A | What are the different biological processes that happen in an oxidation ditch?<br>What unique features are incorporated in its design to encourage the progress of these processes?                                                                                                                                      |   |   | 2 |
| 2B | Which single-sludge system comprises of four alternating anoxic and aerobic zones in series? With a labelled schematic, enlist its salient features.                                                                                                                                                                     | 3 | 2 | 2 |
| 2C | How does the conventional uptake of phosphorus occur in microbes? The stability of a typical EBPR process in waste water treatment plants is always problematic. Reason out why this is so.                                                                                                                              | 4 | 1 | 4 |
| 3A | I have to estimate the steady state concentration of substrate in the waste water generated from a Completely Mixed Reactor, that is operated without solids recycle stream? What expression do I gave to use, for this?                                                                                                 | 3 | 3 | 2 |
| 3B | In the early designs of the plug-flow activated sludge process (ASP), the air application was generally uniform throughout tank length. This was a major design flaw. Identify the problem in this. In variations that were later designed, this was rectified. How was the design changed to circumvent the problem?    | 3 | 3 | 3 |
| 3C | The operational expense of a certain design variation of activated sludge<br>process is much costlier than the conventional ASP. It is observed that the<br>efficiency of nitrification is not very good in this model. Identify this model<br>with a labelled sketch. Analyze the reason for the reduced nitrification. | 4 | 2 | 4 |
| 4A | Design a clarifier for a completely mixed reactor that has an influent flow rate of 10275 m <sup>3</sup> /day and effluent flow rate of 25 m <sup>3</sup> /day. The recycle stream flow rate is 5000 m <sup>3</sup> /day.                                                                                                | 4 | 3 | 4 |

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tank diameter, Side water depth, m                                                                                                                                        |                                                                                                                                                                                 |                                            |                                          |   |   |   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|---|---|---|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m                                                                                                                                                                         | Minimum                                                                                                                                                                         | Recommended                                |                                          |   |   |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <12                                                                                                                                                                       | 3.0                                                                                                                                                                             | 3.4                                        |                                          |   |   |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12 to 20                                                                                                                                                                  | 3.4                                                                                                                                                                             | 3.7                                        |                                          |   |   |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 to 30                                                                                                                                                                  | 3.7                                                                                                                                                                             | 4.0                                        |                                          |   |   |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30 to 42                                                                                                                                                                  | 4.0                                                                                                                                                                             | 4.3                                        |                                          |   |   |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >42                                                                                                                                                                       | 4.3                                                                                                                                                                             | 4.6                                        |                                          |   |   |   |
| 4B | The rate of influent to a CMR removing the BOD content was 10000 m <sup>3</sup> /day. The value of soluble BOD <sub>5</sub> in the influent was 84 mg BOD <sub>5</sub> /L, which is expected to reduce to a value, 12 times lesser. The CMR is then connected to a CMR designed for nitrification purpose. In this reactor, the influent TKN was measured to be 40 mg/L and the target TKN to be achieved is 1 mg/L. It is estimated that the total amount of sludge that was wasted with respect to both heterotrophs & nitrifiers is 603 kg MLVSS/day. Estimate the volume of air and oxygen to be supplied for achieving the necessary BOD and N removal. It is given that at NTP (T = 20 °C & P = 1 atm), the air density is 1.185 kg/m <sup>3</sup> and the percentage oxygen in air by mass is 23.2%. |                                                                                                                                                                           |                                                                                                                                                                                 |                                            |                                          |   | 3 | 4 |
| 5A | 25 mL of a waste water sample was collected to determine the biochemical oxygen demand. The variation of the standard method was followed. The water sample was taken in a 250-mL BOD incubation bottle. The initial DO of the diluted sample was 10.2 mg/L, which after 5 days became 2.5 mg/L. The corresponding initial and final DO of the seeded dilution water was 11.5 and 9.3, respectively. Estimate the BOD <sub>5</sub> of the waste water sample?                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                                                                 |                                            |                                          |   | 4 | 3 |
| 5B | Treated municipal waste water is put to a lot of applications. Discuss on those                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                           |                                                                                                                                                                                 |                                            |                                          |   | 4 | 2 |
| 5C | A completely<br>removal only<br>following grow<br>The influent f<br>required effl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (one sludge syste<br>wth constants:<br>• $\mu_m = 0.104$<br>• $K_d = 0.05$<br>• $Y = 0.5 \text{ kg}$<br>• $K_s = 0.1 \text{ kg}$<br>Clow rate is 0.25 m<br>uent has a (BO | ludge system<br>em). The inoc<br>4 /hour<br>/day<br>g VSS/kg BOI<br>g BOD <sub>5</sub> / m <sup>3</sup><br><sup>3</sup> /s. The solub<br>D <sub>5</sub> ) <sub>total</sub> of 3 | is to be used for c<br>culated microorgani | SOD <sub>5</sub> /L. If the ended solids | 4 | 3 | 4 |