

II SEMESTER M.TECH (INDUSTRIAL BIOTECHNOLOGY) END-SEMESTER EXAMINATION, 27/06/22 (02:00-05:00PM) SUBJECT: Pharmaceutical Biotechnology (BIO 5009)

REVISED CREDIT SYSTEM ANSWER ALL QUESTIONS

TIME: 3 HOURS

MAX. MARKS: 50

Q. NO		MARKS
1A	Briefly explain the significance of the plasma level–time curve? How does the curve relate to the pharmacologic activity of a drug?	4
1B	What are the merits and demerits of oral route of administration?	3
1C	Calculate the half-life for Methotrexate in a patient weighing 70 kg, the volume of distribution of the drug is 0.4 L/kg and the renal clearance is 3 L/hr, assuming 95% of the drug is eliminated in the urine unchanged (unmetabolized).	3
2A	Briefly explain the vesicular and pore transport of drugs in the body.	3
28	A single IV dose of an antibiotic was given to a 50-kg woman at a dose level of 20 mg/kg. Urine samples were removed periodically and assayed for parent drug. The following data were obtained: $\begin{array}{c c c c c c c c c c c c c c c c c c c $	3
2C	Derive the Wagner–Nelson Method to calculate absorption rate constant when the drug is given orally (Assume drug is eliminating by first order and follows one compartment model)	4
3A 3P	 A patient receives 1000 mg every 6 hours by repetitive IV injection of an antibiotic with an elimination half-life of 3 hours. Assume the drug is distributed according to a one-compartment model and the volume of distribution is 20 L. a) Determine the maximum plasma concentration of the drug at steady state. b) the plasma drug concentration C p at 3 hours after the second dose c) Average plasma concentration of drug. 	3
38	hydrochloride every 8 hours for 2 weeks. From the literature, tetracycline	3

	hydrochloride is about 75% bioavailable and has an apparent volume of distribution	
	of 1.5 L/kg. The elimination half-life is about 10 hours. The absorption rate constant is 0.0 hr^{-1} . From this information, calculate	
	is 0.9 m . From this mormation, calculate	
	a) plasma drug concentration $C_{\rm p}$ at 4 hours after the 7th dose,	
	b) Maximum and Minimum Concentration at steady state	
30	Why oral insulin delivery is always a challenging research topic and explain recent	1
JC	developments in the area	-
4 A	What is prodrug? why prodrugs are used in formulation?	3
/D	How donamine is delivered to brain?	2
4D	now dopaining is derivered to brain?	2
4C	Nanomaterials are used to deliver drug to tumor. How it is useful compared to pure drug?	3
4D	What are hydrogels? How they are useful for drug delivery?	2
5 4	Difference between polyclonal and monoclonal antibodies? How antibodies are used	3
5 A	for tumour targeted drug delivery?	5
5P	Why delivering drug to posterior part of the eye is very difficult? explain with an	2
50	example how polymer drug delivery helps in delivering drugs?	5
50	Why tuberculosis is a very difficult disease to contain? explain how Nano-medicine	4
30	is very promising method for drug delivery?	4