

Reg.						-	
No.	2 4 54	de mo	0 1	34	•		

DEPARTMENT OF SCIENCES, II SEMESTER M.Sc. (Physics) END SEMESTER EXAMINATIONS, Makeup -JULY 2022

5254

SUBJECT: NUCLEAR AND PARTICLE PHYSICS [PHY 4208] (REVISED CREDIT SYSTEM-2017)

Time: 3 Hours Date: 27/07/2022 MAX. MARKS: 50

Note: (i) Answer ALL questions

(ii) Assume missing data, if any

- 1. (a) Using Rutherford experiment, estimate size of the nucleus.
 - (b) What is alpha decay? Quantitatively explain the phenomenon of alpha decay using quantum mechanics. [5+5]
- 2. (a) Using potential energy curves, distinguish between proton-proton and neutron-neutron interaction.
 - (b) Elucidate two phenomenon that occur due to interactions of matter with gamma rays. Draw the necessary diagrams.
 - (c) Describe the experimental demonstration of detection of neutrinos. Draw the necessary diagram. [3+4+3]
- 3. (a) Describe liquid drop model of nucleus.
 - (b) Describe the principle and working of Scintillation detector.
 - (c) What are magic number?

[3+5+2]

- 4. (a) Discuss various possible interactions of electrons with matter.
 - (b) What is Compton Effect? Write down the expression for Compton shift.
 - (c) Define mass attenuation coefficient.

[3+5+2]

5. (a) Classify the four fundamental forces. What are quarks? Define the term elementary particles. What are Fermions and Bosons?

hat Raing gestudied everys curves distinguish between product and

- (b) Elucidate the meson theory of nuclear forces.
- (c) What is strangeness quantum number?

[5+3+2]