

Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

DEPARTMENT OF SCIENCES, II SEMESTER M.Sc END SEMESTER EXAMINATION, JUNE 2022 PHY5252: NUMERICAL METHODS & COMPUTATIONAL PHYSICS (REVISED CREDIT SYSTEM)

Time: 3 Hours

MAX. MARKS: 50

4 M

2 M

5 M

2 M

Note: (i) Answer all the questions. (ii) Show all necessary steps, calculations and syntax.

- 1(a) A $n \times n$ square matrix D is said to be a 'nilpotent matrix' with index j if $D^{j} = 0$ for a positive integer $j \le n$. Write a C program to check whether any general $n \times n$ matrix entered by the user is nilpotent or not and also display the index if it is nilpotent matrix
- 1(b) Derive the Adams–Moulton predictor and corrector formulae from the definition of backward difference 4 M
- ^{1(c)} The charging current in a RC circuit is given by the equation, dq/dt = (V q/C)/R. Solve the equation by Euler method to obtain the charge (q) on the plates of the capacitor at intervals of time t = 1ms, 2ms, 3ms, 4ms & 5ms. Given : $R = 4.7 k\Omega$, $C = 1\mu F, V = 5V$, *initial charge* = 0, h = 1ms 2 M
- 2(a) From the data given below, find f(0.4) by Lagrange's interpolation. Show all necessary steps.

х	0.1	0.3	0.5	0.7	0.9	1.1	
y=f(x)	1.852	1.604	1.5	1.636	2.108	3.012	3 M
Charles and Charles							-

- 2(c) Write a C program to simulate radioactive decay by Monte Carlo method.
- 3(a) Find the inverse of the following matrix by LU decomposition method

$$A = \begin{bmatrix} 25 & 5 & 1\\ 64 & 8 & 1\\ 144 & 12 & 1 \end{bmatrix}$$
 5 M

3(b) Find the values of *a* and *b* which will fit the function $xy^a = b$ to the following set of data

Х	3	3.1	3.2	3.3	3.4	3.5	
у	1	0.987	0.9745	0.9626	0.9512	0.9402	5 M

4(a) Solve the differential equation y = x + y' by Runge-Kutta (II) method where y(0) = 2 in the interval $0 \le x \le 0.4$ with h = 0.1 3 M

4(b) Show that after n + 1 iterations of Newton Raphson method, the error ε_{n+1} in the approximate root is given by $\varepsilon_{n+1} \approx -\varepsilon_n^2 f''(r)/2f'(r)$ 2 M

4(c)	For the follow								
	х	1	1.2	1.4	1.6	1.8	2	2.2	
	у	4	7.0272	11.6032	18.2272	27.4752	40	56.5312	5 M

5(a) Write a C program to solve 1D Schrodinger equation for a potential well by finite difference method 3 M

5(b) Derive the Simpson's 1/3 rule for numerical integration

^{5(c)} Obtain the finite difference equivalent for dy/dx and d^2y/dx^2