

## DEPARTMENT OF SCIENCES, IV SEMESTER M.Sc., (PHYSICS)

END SEMESTER EXAMINATION

SUBJECT: STATISTICAL MECHANICS; Subject Code: PHY 6201

## Time: 3 Hrs Date: 02-05-2022 MAX. MARKS: 50

Note: Answer ALL questions. Any missing data may suitably be assumed.

| <ol> <li>(a) What are Thermodynamic potentials? Obtain Maxwell's Thermolynamics.</li> <li>(b) Using Maxwell's second Thermodynamic equation, obtain Clausius latent heat equation.</li> </ol>                       | modynamic<br>[06]<br>-Clapeyron<br>[04] |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 2. (a) Obtain Gibb's Helmholtz energy relations.                                                                                                                                                                    | [04]                                    |
| (b) Show that The pressure of a system of nonrelativistic, non-interacting precisely equal to two-thirds of its energy density.                                                                                     | particles is<br>[03]                    |
| (c) Explain briefly microcanonical, canonical and grand canonical ensembles. [03]                                                                                                                                   |                                         |
| 3. (a) State and prove Liouville's Theorem.                                                                                                                                                                         | [05]                                    |
| (b) What is Gibb's paradox? Obtain Sackur-Tetrode equation.                                                                                                                                                         | [05]                                    |
| 4. (a) Show that for a system in canonical ensemble, Thermodynamical entropy $S = k \log Z + (U/T)$ , where Z is partition function, U is the internal energy and T is the absolute temperature of the system. [03] |                                         |
| (b) Obtain expressions for the partition function z of a perfect monatomic gas in ensemble.                                                                                                                         | a canonical<br>[03]                     |
| (c ) Obtain expressions for Helmholtz free energy and statistical entropy of perfect<br>gas in a canonical ensemble.                                                                                                | t monatomic<br>[04]                     |
| 5. (a) Explain with the help of necessary theory the phenomenon of Bose-Einstein condensation.<br>[05]                                                                                                              |                                         |
|                                                                                                                                                                                                                     |                                         |

(b) Discuss the Pauli's theory of Para magnetism of an ideal Fermi gas and derive expressions for the magnetic susceptibility. [05]

於 於 於