## Exam Date & Time: 09-Jun-2022 (09:00 AM - 12:00 PM)



## **ENGINEERING MATHEMATICS - IV [MAT 2258]**

## **Duration: 180 mins.**

## **Descriptive Questions**

Answer all the questions.

Section Duration: 180 mins

- 1) Solve the boundary value problem  $y'' + xy' + y = 3x^2 + 2$  with y(0) = 0, y(1) = 1 using the method of finite difference. Take h = 0.25. (4)
  - A)

Marks: 50

- B) From a city population, the probability of selecting (i) a male or a smoker is  $\frac{7}{10}$  (ii) a male smoker is  $\frac{2}{5}$ , and (iii) a male, if smoker is already selected is  $\frac{2}{3}$ . Find the probability (3) of selecting (a) a non-smoker, (b) a male, and (c) a smoker, if male is first selected.
- C) Suppose that the life length of an electric device, X is considered as a continuous random variable with the following pdf  $f(x) = ke^{-x}, x > 0$ . The cost of manufacturing one such item is \$2 . the manufacturer sells the item for \$5 but guarantees a total refund if  $X \le 0.9$  (3). What is the manufacturer's expected profit per item?

2) Solve 
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -10(x^2 + y^2 + 10), 0 < x < 3, 0 < y < 3$$
 with  $u(x, y) = 0$  on the boundary and  $h = \frac{1}{4}$ . (4)

- A)
- B) The joint pdf of two continuous random variables X and Y is given as:

$$f(x,y) = \begin{cases} \frac{2x+y}{210}, & 2 < x < 6, 0 < y < 5\\ 0, & otherwise \end{cases}$$

a. Write the marginal pdfs for X and Y.

b. Find 
$$P(X + Y > 4)$$
.

C)

- Suppose that X, Y & Z are three random variables with same variance 4. Also, the correlation coefficient between X & Y is  $\frac{1}{4}$  and between Y & Z and Z & X is zero. What will be the correlation coefficient between U & V where U = X + Y, V = Y + Z? (3)
- 3) Compute u(x, t) for four-time levels taking h= 0.25 and  $\lambda = \frac{1}{2}$ . Given  $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ , (4) 0 < x < 1, t > 0 subject to  $u(x, 0) = 100(x - x^2)$ , and u(0, t) = u(1, t) = 0.

(3)

|    | A) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|----|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | B) | If the probability that an individual will suffer a bad reaction from injection of a given serum is <b>0.001</b> , determine the probability using Poisson's distribution that out of <b>2000</b> individuals                                                                                                                                                                                                                                                    |     |
|    |    | a. Exactly 3 individuals                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3) |
|    |    | b. More than 2 individuals                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|    |    | will suffer a bad reaction.                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|    | C) | Solve $y_{n+2} - 4y_n = n^2 + n - 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                           | (3) |
| 4) | A) | Suppose that an item is produced in three factories $X, Y$ and $Z$ . It is known that factory $X$ produces thrice as many items as factory $Y$ , and that factory $Y$ and $Z$ produce the same number of items. If 3 percent of the items produced by each of the factories $X$ and $Z$ are defective, while 5 percent of those manufactured by $Y$ are defective. All the items produced in the three factories are stocked, and an item is selected at random. | (4) |
|    |    | a. What is the probability that the selected item is defective?                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|    |    | b. If an item selected is found to be defective, what is the probability that it was produced by factory <b>Y</b> ?                                                                                                                                                                                                                                                                                                                                              |     |
|    | B) | Find the Z - transform of $u_n = \frac{1}{n!}$ and hence evaluate $Z\left(\frac{1}{(n+1)!}\right)$ .                                                                                                                                                                                                                                                                                                                                                             | (3) |
|    | C) | Using Z – transform, solve $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ , with $u_0 = 0, u_1 = 1$ .                                                                                                                                                                                                                                                                                                                                                                         | (3) |
| 5) |    | In a normal distribution, <b>31%</b> of the items are under <b>45</b> and <b>8%</b> are over <b>64</b> . Find the mean and variance of distribution.                                                                                                                                                                                                                                                                                                             | (4) |
|    | A) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|    | B) | Suppose X is uniformly distributed over (0,1), find pdf of $Y = \frac{1}{X+1}$ .                                                                                                                                                                                                                                                                                                                                                                                 | (3) |
|    | C) | Suppose the moment generating functions of three independent random variables $X_1, X_2$<br>and $X_3$ are $e^{2t(1+t)}$ , $e^{3t(1+t)}$ and $e^{4t(1+t)}$ respectively. Then find the probability density<br>function of                                                                                                                                                                                                                                         | (3) |
|    |    | $Z = 4X_1 + X_2 + 2X_3$ . Hence obtain $E\left(\frac{z}{2}\right)$ and $V\left(\frac{z}{2}\right)$ .                                                                                                                                                                                                                                                                                                                                                             |     |

-----End-----