Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

IISEMESTER M.TECH (INDUSTRIAL BIOTECHNOLOGY) END SEMESTER EXAMINATIONS, JUNE 2022 (REGULAR)

BIO5254: BIOREACTOR DESIGN AND ANALYSIS

REVISED CREDIT SYSTEM ANSWER ALL QUESTIONS

Time: 3 Hours

MAX. MARKS: 50

SL NO	Question	CO	BTL	Μ
1A.	How do you define the reaction rate in heterogeneous reaction system? Explain various parameters affecting the reaction rate in heterogeneous reaction system.	1	3	4
1B.	Write on the various dimensionless parameters that are used in estimating (i) External Mass transfer effects (ii) Internal mass transfer effects	1	3	3
1C	Hydrolysis of palm oil is carried out in a CSTR with free lipase enzyme. The substrate sucrose (S0=4M) is pumped at 0.1 L/h.Find the volume of the reactor to achieve 45% conversion at steady state for (a) Michaelis-Menten Kinetics (b) Substrate Inhibition Kinetics. Kinetics data: V_m =0.028 M/min, K _m =0.23 M, K _I =0.2 M	2	3	3
2A.	What do you mean by constant feed rate policy in the operation of immobilized enzyme reactor system? Develop a suitable model for predicting the time course profiles of conversion due to enzyme deactivation for first order kinetics, no pore diffusion effects in PFR with immobilized enzyme.	2	3	4
2B.	 Consider a 1000 L CSTR in which biomass is being produced with glucose as the substrate. The microbial system follows a Monod relationship with μ_m = 0.4 h⁻¹, K_S = 1.5 g/l and the yield factor Y_{X/S} = 0.5 g biomass/g substrate consumed. If the normal operation is with a sterile feed containing 10 g/l glucose at a rate of 100 L/h: What is the specific biomass production rate (g/L-h) at steady state? If recycle is used with a recycle stream of 10 L/h and a recycle biomass concentration five times as large as that in the reactor exit, what would be the new specific biomass production rate? 	2	3	4
2C	When do you prefer the Fed-batch reactor? Explain how quasi steady state is justified in Fed-batch reactor.	2	3	2
3A.	Differentiate between controllability and stabilizability of the bioprocess? Explain various steps involved in designing of controller for bioprocess.	4	3	4
3B	Consider that you have been working with Chemostat system where cell growth follows the substrate inhibition kinetics. Write the conditions for obtaining positive and negative real parts of Eigen values.	3	3	2

3C	Certain bio-product is produced using Bacillus species in a fermentation system of three chemostats in series with volume, V2=40 L, V3=67 L. The feed flow rate is 100 L/h. Graphically det steady state biomass concentration in above all three chemostats. Kinetic data for Bacillus species is as follows: $X, g/l$ 00.20.30.40.550.600.700.80 dX/dt ,00.10.20.30.30.380.360.30.2	V1=167 L, ermine the The growth	2	3	4
4A.	$\mu = \frac{\mu m.s}{(Ks + S + \frac{S^2}{KI})}$ i. Find the elements of A matrix ii. Find the Eigen values and comment on the stability of the system.	3	4	4	
4B.	Proponoic acid is produced using <i>Bacillus licheniformis</i> in a under sterile environment with glucose as the substrate ,S ₀ =4 g/rate of D=0.49 h ⁻¹ . Steady state substrate and biomass concentration and 1.0 g/l respectively. Assume that growth follows the Monod with, µm=0.53 h ⁻¹ , Ks=0.12 g/l and Y=0.4. It is desired to control the steady state value by manipulating the dilution rate of feed.	4	4	4	
4C	Name the Input, output and manipulated variable in Activated sludg	4	3	2	
5A.	RTD results for the non-ideal bioreactor are shown in the followin pulse input. Find the conversion for macro fluid with kinetics (-rA CA0=10 M	5	3	3	

	Time, min	0	5	10	15	20	25	30	35			
	E (t)	0	0.03	0.05	0.05	0.04	0.02	0.01	0			
5B.	A pulse inpu fig. (a) Check the results are of (b) If the resolved V) and sket	ne mate consist	non-idea erial bala ent. consisten	ance with at, detern	tor gives	s the res	ults show	vhether	he	5	3	4
				0 t,	min	5						
5C	Write on the how foaming				•	•	ation of	oioreacto	or. Explain	2	3	3