MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

II SEMESTER M.TECH.(DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING) END SEMESTER EXAMINATIONS, JUNE/JULY 2022

SUBJECT: ALGORITHMIC FOUNDATIONS OF DATA SCIENCE (CSE - 5002)

REVISED CREDIT SYSTEM

(01/07/2022)

Time: 2:00 - 5:00 pm

MAX.MARKS: 50

INSTRUCTIONS TO CANDIDATES:-

- Answer **ALL** the questions.
- Missing data may be suitable assumed.

Q.	Questions	Μ	CLO	AHE	Bloo
n				P2L	ms
0				0	
1	Volume is concentrated in a small annulus of width	4M	1	M1,	5
Α.	O(1/d) near the boundary. For the given scenario,			МЗ	
	calculate the volume of the unit ball in d-				
	dimensional space.				
1	Find the singular value decomposition of a matrix	4 M	1	М1	Λ
B		4101	-	M3	-
0.	$\begin{bmatrix} 4 & 0 \\ 2 & -1 \end{bmatrix}$			115	
	13 -51				
1	Design a Markov chain whose stationary	2M	2	M2,	3
С.	distribution is a given target distribution.			МЗ	
2 A	Discuss the following guestions -	3M	2	M2, M3	2
	a) What is the expected time for a random walk				
	starting at a vertex x to reach a target vertex y?				
	b) What is the expected time until the random walk				
	returns to the vertex it started initially?				
	What is the expected time to reach every				
	vertex?				
2	Show matrix multiplication using sampling method.	4M	3	M2,	3
В.	Give proper equations.			МЗ	
2	Illustrate with an example, the perceptron	3M	3	M2.	2
C.	algorithm.	_	-	M3	
2	Formulate the learning problem of finding a		4	N 1 1	6
5	classification rule that performs well on new input	ויוכ	4	™⊥, M2	σ
А.	Classification rule that performs well on new input			1VI J	

	data.				
3 B.	For probability distribution in spectral clustering "means separated by six standard deviations" suffice different distribution. Obtain the mathematical equation with an example.	3М	3	M2, M3	6
3 C.	Suppose data points are drawn from some probability distribution D over R ^d , and that the clusters correspond to high-density regions surrounded by lower-density regions. Write the assumptions for the given scenario with respect to robust version of single linkage.	2М	4	M1, M3	2
4 A.	Describe the Factor Graphs using Tree algorithm.	5M	5	M1, M2	2
4 B.	Design a graph with single cycle for the message passing algorithm.	3M	5	M1, M2	5
4 C.	Analyze the given graph for the basic model of random graph G(n,p) where n is the number of vertices and p is the edge probability. 1 - o(1) Probability of a giant component $o(1)$ $1 - \varepsilon$ Expected number of friends per person $1 + \varepsilon$	2M	4	M1, M3	3
5 A.	The threshold for the existence of cycles in any graph is 1/n. Derive the proof with valid justification.	4M	5	M1, M2	4
5 B.	Describe the process of semi-definite programming.	4M	5	M1, M2	2
5 C.	Write the characteristics features of Deep Learning network.	2M	3	M2, M3	2