


Reg. No.					

DEPARTMENT OF SCIENCES, II SEMESTER M.Sc (CHEMISTRY) END SEMESTER EXAMINATIONS, JUNE 2022 SUBJECT: ORGANIC CHEMISTRY II [CHM 5201] (REVISED CREDIT SYSTEM)

	Time: 3 Hours	Date:	MAX. MARKS: 50
	Note: (i) Answer ALL	questions	
	(ii) Write reactio	ns, structures or mechanisms wherever r	necessary
1A.	Give the reaction f i) Preparation of C ii) Hydroformylatio iii)Walker process	ollman's reagent	4
1 B .	iv)Preparation of n Predict the proper i i)W(CO) ₆ + ?	the tal arene complex by Grignard meth reagent in the following reactions. (CO) ₅ W=COMeR ePh + ? $(CO)_4$ BrW=.CPh	4
1C.	iii)Me ₃ SiCl + ? iv)BF ₃ + ? 2 Give reason for the i)Main group organ	$\xrightarrow{?} \text{Me}_3 \text{SiO SiMe}_3 \\ \text{BR}_3 + \text{MgXF}$	vent.
2A.	ii) Ferrocene actsiii) Substitution re	or the following. of metal alkene complexes as an aromatic compound. actions of Metal carbonyls ion of organolithium compounds.	4
2B.	· · ·	t used to prepare unsaturated alcohols of isomerism present in Fe(CO) ₅ .	and give reactions for the same. 4
2C.	i)Organo zinc com	een the following. pounds and Organo mercury compoun im compounds and organoberyllium co	
3A.	Write a note on the i)Л back bonding. ii)Isolobal behavio	-	4
3B. 3C.	Describe feasible c correlation diagram Give reason for the	conditions of [2+2]-cycloaddition reac	etions using Woodward Hoffmann 4

ii)Metal alkene complexes undergo nucleophilic addition easily.

- **4A.** Explain the nomenclature system used for signatropic reactions. Write the mechanism of **4** [3,3]-signatropic reaction using FMO theory.
- **4B.** Apply FMO theory to the following reaction, identify reaction condition and **4** stereochemistry of the following reaction.

- 4C. Sketch and explain suprafacial and antarafacial shift of methyl group using an illustrative 2 example.
- 5A. i) Explain the mechanism of Tischenko reaction. Write its industrial importance.4 ii) How is dioxirane reagent prepared? Write two of its synthetic applications
- **5B.** Describe the synthetic scope, mechanism and applications of cross coupling reaction in the **4** presence of metal catalyst and suitable ligands.
- **5C.** Write the mechanism and pharmaceutical importance of Henry reaction.

2

Scheme of evaluation End Semister Exam 25-6-2022					
Organic chemistry 11					
1A. Proper reactions	(1+1+1+1) M				
1B. Proper reagent	(1+1+1+1) M				
1C. i) Main group organometallic compounds undergo hydrolysis and oxidation. 1M					
ii) There is no d orbitals and the gap between second shell and third shell is large. 1M					
2A. Proper example with reaction.	(1+1+1+1)M.				
2B. i)Name	(0.5)M				
Reaction	(1.5)M				
ii) Proper explanation	(2)M				
2C. Any two proper differences	(1+1)M				
3A. Proper explanations	(2+2)M				
3B. Correlation diagram for [2+2]-cycloaddition reaction:					
Main reaction, molecular orbitals of reactant and product with appropriate symmetry, P electrons from reactant orbitals to product orbitals: $(1+1+1)$ M					

Conclusion from orbital correlation diagram: 1 M

3C. proper reason for each

(1+1)M

4A. Nomenclature of sigmatropic reaction: 1 M; Example of [3,3]-sigmatropic reaction, MO's with HOMO/LUMO labelling, Application of FMO theory: (1+1+1) M

4B. Identification of product and reaction conditions: 1 M

FMO theory for the molecule: 2 M

Stereochemistry aspects: 1 M

4C. Suprafacial and antarafacial shift: (1+1) M

5A. i) & ii): 2 M each for reaction, mechanism and applications,

5B. Synthetic scope: 1 M; Mechanism: 2 M; Applications: 1 M.

5C. Mechanism: 1 M; Importance: 1 M

Proper flow of