# **Question Paper**

Exam Date & Time: 06-Jan-2023 (09:30 AM - 12:30 PM)



# MANIPAL ACADEMY OF HIGHER EDUCATION

#### FIRST SEMESTER B.TECH. EXAMINATIONS - JANUARY 2023 SUBJECT: ECE 1071 / ECE-1071 - BASIC ELECTRONICS

Marks: 50

\_

## Duration: 180 mins.

## Answer all the questions.

| 1A) | Obtain an expression for the drain current of MOSFET in terms of 'V <sub>GS</sub> ', 'V <sub>DS</sub> ', and the dimension of                                                                                                                                                                                                                                                        | (4) |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| ,   | the device. Also, plot the VI characteristics of the device indicating all the salient features on it.                                                                                                                                                                                                                                                                               | . / |
| 1B) | Plot the VI characteristics of a Zener diode. Explain the different types of regulations that can be found in a Zener regulator with a neat circuit diagram and relevant equations.                                                                                                                                                                                                  | (3) |
| 1C) | Calculate the static and dynamic resistance of a PN junction Germanium diode at a temperature of 50 <sup>o</sup> C, when the applied voltage is 0.25V and reverse saturation current is 10 $\mu$ A.                                                                                                                                                                                  | (3) |
| 2A) | A sinusoidal voltage of 130V peak-to-peak from the secondary of the transformer is applied to a half-wave rectifier, with a load resistance of $1k\Omega$ . If the cut-in voltage of the diode is $0.7V$ and the forward resistance of the diode is $30\Omega$ , find the values of the following. i) DC and RMS values of the load current. ii) DC output power and AC input power. | (4) |
| 2B) | Draw the Zener voltage regulator circuit. Given, the series resistance connected in the circuit is $2k\Omega$ and the load applied is $4k\Omega$ . Input voltage is varied between (31±9) V. Zener breakdown voltage is 10V. Find the minimum and maximum value of current through the Zener.                                                                                        | (3) |
| 2C) | With a neat circuit diagram, explain the working of a full wave bridge rectifier with a capacitor filter.<br>Draw the corresponding input and output waveforms.                                                                                                                                                                                                                      | (3) |
| 3A) | A (7,4) bit Hamming code received is $0100111(P_1P_2D_3P_4D_5D_6D_7)$ , considering even parity. Check for errors in the received code and if there is an error, write the corrected code, Also represent the corrected code in 8421 BCD code.                                                                                                                                       | (4) |
| 3B) | The inputs V <sub>1</sub> =60 $\mu$ V and V <sub>2</sub> =30 $\mu$ V is given to the non-inverting and inverting terminals of an OPAMP, respectively. The common mode gain is 40dB and CMRR is 60dB. Calculate the output voltage. Also, Determine the output voltage when V <sub>1</sub> =V <sub>2</sub> =30 $\mu$ V is given as input.                                             | (3) |
| 3C) | Realize an op-amp inverting integrator with RC=1 second, and input is a step voltage of 2V. Determine the output voltage at t=4 second and sketch the output waveform.                                                                                                                                                                                                               | (3) |
| 4A) | Simplify the following SOP expression using K-Map and implement using NAND gates only $f(A, B, C, D) = \sum m (0,1,4,5,6,7,9,11,15) + \sum d (10,14).$                                                                                                                                                                                                                               | (4) |
| 4B) | Realise a 3-bit up counter using the positive edge triggered JK flip flops. Draw the timing diagram for the same.                                                                                                                                                                                                                                                                    | (3) |
| 4C) | With a neat logic diagram and truth table, explain the working of SR flip-flop, implemented using only NAND gates. Mention the limitation of SR flip-flop.                                                                                                                                                                                                                           | (3) |
| 5A) | Certain AM transmitter radiates 12kW of power with carrier unmodulated and 15.250kW of power when carrier is sinusoidally modulated. Calculate the modulation index. If another sine wave corresponding to 60% modulation is transmitted simultaneously, determine the total power radiated.                                                                                         | (4) |
| 5B) | Write the equation for Frequency Modulated signal in time domain for a sinusoidal modulating signal. Determine the bandwidth and modulation index of FM signal required to transmit 12 kHz, 3V                                                                                                                                                                                       | (3) |
|     |                                                                                                                                                                                                                                                                                                                                                                                      | Р   |

5C)

Define sampling theorem. Consider an analog signal,  $x(t)=15\cos(15\pi t)+10\sin(100\pi t)+5\cos(300\pi t)$ . Determine the minimum sampling rate required to reconstruct the signal.

-----End-----