Question Paper

Exam Date & Time: 14-Jan-2023 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

FIRST SEMESTER B.TECH. EXAMINATIONS - JANUARY 2023 SUBJECT: MAT 1171 / MAT-1171 - ENGINEERING MATHEMATICS - I

Marks: 50 Duration: 180 mins.

Answer all the questions.

	Income per day (Rs.)	Under 10	10-20	20-30	30-40	40-50		
	Number of persons	20	45	115	210	115		
	Estimate the probable number of persons in the income group 20-25.							
1B)	Solve $\frac{dy}{dx} = \frac{(y^4 - y^4)^2}{4x - xy^4}$	+2y)						(3)

From the data given below, Compute
$$\left(\frac{dy}{dx}\right)_{x=3}$$
 and $\left(\frac{d^2y}{dx^2}\right)_{x=-2}$. (3)

x	-2	-1	0	1	2	3
у	0	1	6	24	60	120

Using Runge Kutta method of fourth order, solve
$$y' = x + y^2$$
 with $y(0) = 1$ at $x = 0.2$ in steps of length $h = 0.1$.

Solve
$$(3y^4 + 3x^2y^2)dx + (x^3y - 3xy^3)dy = 0.$$
 (3)

Find the approximate value of
$$\int_0^{\frac{\pi}{2}} \sqrt{\cos \theta} \ d\theta$$
 using Simpson's $1/3^{\text{rd}}$ rule by dividing $\left[0, \frac{\pi}{2}\right]$ into 6 equal parts.

Using Gauss Seidel method solve the system of equations
$$10x_1 - 2x_2 - x_3 - x_4 = 3$$

$$-2x_1 + 10x_2 - x_3 - x_4 = 15$$

$$-x_1 - x_2 + 10x_3 - 2x_4 = 27$$

$$-x_1 - x_2 - 2x_3 + 10x_4 = -9$$
Take the initial expression at in each $x_1 = x_2 = x_3 = 0$

Take the initial approximation as $x_2 = x_3 = x_4 = 0$. Carry out 3 iterations and correct up to 4 decimal places.

Solve the differential equation $(D^2 + 1)y = \sec x \tan x$ by the method of variation of parameters. (3)

(3)

- Compute a real root of $3x \cos x 1 = 0$ using the Newton-Raphson method with $x_0 = 0.6$ correct to four decimal places.
- 4A) Using Gram-Schmidt orthogonalization process, construct an orthonormal set of (4) vectors from the set {(1,2,1), (1,0,1),(3,1,0)} for R³.
- 4B) Solve $(2x+3)^2 \frac{d^2y}{dx^2} (2x+3)\frac{dy}{dx} 12y = 6x$. (3)
- Find the eigen values and one of the eigen vectors of the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ (3)
- Define minimal spanning set of vectors. Prove that a minimal spanning set of vectors forms a basis for a vector space V over F.
- 5B) Given $\frac{dy}{dx} = 1 + xy$ with the initial condition y(0) = 1. Using Taylor series method, compute (3)

y(0.1) correct to four decimal places by considering terms up to fourth order.

5C) Using the Gauss-Jordan method, find the inverse of: (3)

$$A = \begin{bmatrix} 1 & 3 & 1 \\ -1 & 1 & 2 \\ 2 & 1 & -2 \end{bmatrix}.$$

----End-----